Julho 2025 vol. 11 num. 1 - XV Encontro Científico de Física Aplicada

Artigo - Open Access.

Idioma principal | Segundo idioma

Virtual Cells as Modeling Tools for Epigenetics, Ploidy, and Cell Fate under Quantum Principles

Virtual Cells as Modeling Tools for Epigenetics, Ploidy, and Cell Fate under Quantum Principles

Casotti, Matheus Correia ; Altoé, Lorena Souza Castro ; Angelos, Tamires de Almeida ; Barbosa, Karen Ruth Michio ; Campanharo, Camilly Victória ; Giacinti, Giulia Maria ; Guaitolini, Yasmin Moreto ; Lopes, Victor Alves ; Melo, Daniel Moreira ; Muniz, Luana Rodrigues ; Paula, Flavia de ; Silva, Adriana Madeira Álvares da ; Sousa, Marcelo Victor Pires de ; Louro, Iuri Drumond ; Meira, Debora Dummer ;

Artigo:

A variação de ploidia tem se mostrado um mecanismo fundamental de adaptação celular em organismos como fungos e células tumorais humanas, promovendo flexibilidade epigenética e diversidade de destinos celulares. Paralelamente, os avanços em modelagem computacional e inteligência artificial (IA) têm permitido a construção de células virtuais (AI Virtual Cells – AIVCs) capazes de simular comportamentos celulares complexos em contextos tridimensionais e multi-escala. Este trabalho propõe uma revisão integrativa e um modelo conceitual que conectam a variação de ploidia, a instabilidade epigenética e a teoria quântica da mutação adaptativa ao desenvolvimento de AIVCs. A partir da análise de casos biológicos e modelos matemáticos, discutimos como a simulação de flutuações torsionais do DNA e transições epigenéticas pode informar a construção de “gêmeos digitais” celulares capazes de prever destinos celulares sob diferentes pressões seletivas. Defendemos que a próxima geração de AIVCs deverá integrar algoritmos de aprendizado profundo, princípios de mecânica estatística e simulações quânticas para captar a plasticidade genômica e epigenética que emerge de estados de ploidia variável. A proposta amplia o escopo das modelagens existentes, com implicações para biologia do câncer, diferenciação celular, biologia da regeneração e medicina personalizada.

Artigo:

Ploidy variation has emerged as a fundamental mechanism of cellular adaptation in organisms such as fungi and human tumor cells, promoting epigenetic flexibility and diversity of cell fates. In parallel, advances in computational modeling and artificial intelligence (AI) have enabled the development of virtual cells (AI Virtual Cells – AIVCs) capable of simulating complex cellular behaviors in three-dimensional, multi-scale contexts. This work proposes an integrative review and a conceptual model that connect ploidy variation, epigenetic instability, and the quantum theory of adaptive mutation to the development of AIVCs. Based on the analysis of biological case studies and mathematical models, we discuss how the simulation of DNA torsional fluctuations and epigenetic transitions can inform the construction of cellular "digital twins" capable of predicting cell fate under different selective pressures. We argue that the next generation of AIVCs should integrate deep learning algorithms, principles of statistical mechanics, and quantum simulations to capture the genomic and epigenetic plasticity emerging from variable ploidy states. This proposal broadens the scope of existing models, with implications for cancer biology, cell differentiation, regenerative biology, and personalized medicine.

Palavras-chave: células virtuais, epigenética, quântica, modelagem, destino celular,

Palavras-chave: virtual cells, epigenetics, quantum, modeling, cell fate.,

DOI: 10.5151/xvecfa-2025005

Referências bibliográficas
  • [1] CASOTTI, M. C.; MEIRA, D. D.; ZETUM, A. S. S.; CAMPANHARO, C. V.; DA SILVA, D. R. C.; GIACINTI, G. M.; *et al.* Integrating frontiers: a holistic, quantum and evolutionary approach to conquering cancer through systems biology and multidisciplinary synergy. *Frontiers in Oncology*, v. 14, 1419599, 2024.
  • [2] CASOTTI, M. C.; ZETUM, A. S. S.; DA SILVA, D. R. C.; BARBOSA, D. G.; ALVARENGA, F. D. S.; GIACINTI, G. M.; *et al.* Syncytia: From a Historical Resumption to Epigenetic Advances. *DNA and Cell Biology Reports*, v. 6, n. 1, p. 36-45, 2025.
  • [3] LOEW, L. M.; SCHAFF, J. C. The Virtual Cell: a software environment for computational cell biology. *Trends in Biotechnology*, v. 19, n. 10, p. 401-406, 200
  • [4] GRAEPEL, R.; LAMON, L.; ASTURLOL, D.; BERGREN, E.; JOOSSENS, E.; PAIN, A.; et al. The virtual cell based assay: Current status and future perspectives. *Toxicology in Vitro*, v. 45, p. 258-267, 2017.
  • [5] JOHNSON, G. T.; AGMON, E.; AKAMATSU, M.; LUNDBERG, E.; LYONS, B.; OUYANG, W.; et al. Building the next generation of virtual cells to understand cellular biology. *Biophysical Journal*, v. 122, n. 18, p. 3560-3569, 2023.
  • [6] COMENGEIS, J. Z.; JOOSSENS, E.; BENITO, J. S.; WORTH, A.; PAIN, A. Theoretical and mathematical foundation of the virtual cell based assay—a review. *Toxicology in Vitro*, v. 45, p. 209-221, 2017.
  • [7] PAIN, A.; BENITO, J. V. S.; BESSEMES, J.; WORTH, A. P. From in vitro to in vivo: Integration of the virtual cell based assay with physiologically based kinetic modeling. *Toxicology in Vitro*, v. 45, p. 241-248, 201
  • [8] BEDNARCZYK, E.; LU, Y.; PAIN, A.; BATISTA LEITE, S.; VAN GRUNSVEN, L. A.; WORTH, A.; WHELAN, M. Extension of the virtual cell based assay from a 2-D to a 3-D cell culture model. *Alternatives to Laboratory Animals*, v. 50, n. 1, p. 45-56, 2022.
  • [9] BUNN, C.; ROOHANI, Y.; ROSEN, Y.; GUPTA, A.; ZHANG, X.; ROED, M.; et al. How to build the virtual cell with artificial intelligence: Priorities and opportunities. *Cell*, v. 187, n. 25, p. 7045-7063, 2024.
  • [10] BRYNDIN, E. From Creating Virtual Cells with AI and Spatial AI to Smart Information Multi-Level Model of the Universe. *Journal of Progress in Engineering and Physical Science*, v. 4, n. 1, p. 1-7, 2025.
  • [11] TOOD, R. T.; FORCHE, A.; SELMECKI, A. M. Ploidy variation in fungi: polyploidy, aneuploidy, and genome evolution. *Microbiology Spectrum*, v. 5, n. 4, p. 10-1128, 2017.
  • [12] CHIARGUI, D.; DEGANO, P.; VAN KLINKEN, J. B.; MARANGONI, R. Cells in silico: a holistic approach. In: *International Schools of Systems Biology: 8th International School on Formal Methods for the Design of Computer, Communication, and Software Systems*, SFM 2008, Bertinoro, June 2-7, 2008. *Advances in Systems Biology*. Berlin Heidelberg: Springer, 2008.
  • [13] HEVANDT, T.; HEIDARI, M.; JASHANGHIAN, O.; WÓJCIK, M. XU; KLADY, M. J.; et al. Development of a virtual cell model to predict cell response to substrate topography. *ACS nano*, v. 11, n. 9, p. 9084-9092, 2017.
  • [14] SHYH-CHANG, N.; LUO, L. DNA Torsion-based Model of Cell Fate Phase Transitions. *arXiv preprint* arXiv:2002.05942, 2020.
  • [15] RABAUDANET, J. F.; BABIBERRA, A. L.; TUBAY, J. M.; JOSE, E. C. Mathematical modeling of cell-fate specification from simple to complex epigenetic systems. *Stem Cells Epigenetics*, v. 2, e752, 20
  • [16] YANG, T.; WANG, Y. Y.; MA, F. J.; YOU, B. H.; QIAN, H. L. Build the virtual cell with artificial intelligence: a perspective for cancer research. *Military Medical Research*, v. 12, n. 1, p. 4, 2025.
  • [17] MCFADDEN, J.; AL-KHALILI, J. A quantum mechanical model of adaptive mutation. *Biosystems*, v. 50, n. 3, p. 203-211, 1999.
  • [18] BORDONARO, M.; CHIARO, C. R.; MAY, T. Experimental design to evaluate directed adaptive mutation in Mammalian cells. *JMIR Research Protocols*, v. 3, n. 4, e3860, 2014.
  • [19] TODARO, J. S.; MILLER, J. W. B. The unicellular state as a point source in a quantum biological system. *Biology*, v. 5, n. 2, p. 205, 2016.
  • [20] SCOTT, A. L.; RICHMOND, P. A.; DOWELL, R. D.; SELMECKI, A. M. The influence of polyploidy on the evolution of yeast grown in a sub-optimal carbon source. *Molecular Biology and Evolution*, v. 34, n. 10, p. 2690-2703, 2017.
  • [21] GUO, W. Y.; LIU, Y.; HUANG, P. C.; RONG, M.; WEI, W.; XU, Y. H.; WEI, J. H. Adaptive Changes and Genetic Mechanisms in Organisms Under Controlled Conditions: A Review. *International Journal of Molecular Sciences*, v. 26, n. 5, p. 2130, 2025.
  • [22] DJORDJEVIC, B. I.; DJORDJEVIC, I. B. Quantum-Mechanical Modeling of Mutations, Aging, Evolution, Tumor, and Cancer Development. *Quantum Biological Information Theory*, p. 197-236, 2016.
  • [23] GREULICH, P.; SMITH, R.; MACARTHUR, B. D. Stochastic fate decisions: from single-cell variability to population heterogeneity. *Nature Reviews Genetics*, p. 189-206, 2020.
  • [24] PAIN, A.; MENNECOZZI, M.; HORVAT, T.; GERLOFF, K.; PALOSAARI, T.; BENITO, J. S.; WORTH, A. P. The virtual cell based assay and risk assessment of nanomaterials: Read-across of hazard from data-rich to data-poor substances. *Toxicology in Vitro*, v. 45, p. 233-240, 2017.
  • [25] ALARCÓN, T.; MENENDEZ, J. A.; SARDANYÉS, J. Metabolic early warning signals of epigenetic tipping points under chromatin modifier competition. *bioRxiv*, 2025-03.
  • [26] HAM, L.; WOODWARD, T. E.; COOMER, M. A.; STUMPF, M. P. Mapping, Modeling, and Reprogramming Cell-Fate Decision-Making Systems. *Annual Review of Biomedical Data Science*, v. 8, 2024.
  • [27] JIANG, H.; MANZELLA, M.; DJAPIC, L.; GANESAN, N. Computational Framework for in-Silico Study of Virtual Cell Biology via Process Simulation and Multiscale Modeling. In: *Proceedings of the 7th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics*, p. 384-393, 2016.
  • [28] SHARMA, S.; KUMAR, D. Application of Multi-scale Modeling Techniques in System Biology. In: *Systems Biology, Bioinformatics and Livestock Science*, p. 17-50, 2023.
  • [29] GRUNT, T. W. Understanding Cancer From a Biophysical, Developmental and Systems Biology Perspective. *BioSystems*, p. 105376, 2024.
  • [30] WEST, J.; ADLER, F.; GALLAHER, J.; STROBL, M.; BRADY-NICHOLLS, R.; BROWN, J.; et al. A survey of open questions in adaptive therapy: Bridging mathematics and clinical translation. *Elife*, v. 12, p. e84263, 2023.
Como citar:

Casotti, Matheus Correia; Altoé, Lorena Souza Castro; Angelos, Tamires de Almeida; Barbosa, Karen Ruth Michio; Campanharo, Camilly Victória; Giacinti, Giulia Maria; Guaitolini, Yasmin Moreto; Lopes, Victor Alves; Melo, Daniel Moreira; Muniz, Luana Rodrigues; Paula, Flavia de; Silva, Adriana Madeira Álvares da; Sousa, Marcelo Victor Pires de; Louro, Iuri Drumond; Meira, Debora Dummer; "Virtual Cells as Modeling Tools for Epigenetics, Ploidy, and Cell Fate under Quantum Principles", p. 21-27 . In: Anais do XV Encontro Científico de Física Aplicada. São Paulo: Blucher, 2025.
ISSN 2358-2359, DOI 10.5151/xvecfa-2025005

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações