Conference full papers - Open Access.

Idioma principal

The 3d printing fabrication of cellular solids structures and its use in architecture

The 3d printing fabrication of cellular solids structures and its use in architecture

Rocha, Bruno Massara; Steiner, Ygor Facco; Venancio, Leonardo Valbão; Lauwers, Sara Rodrigues;

Conference full papers:

This article shows the results of the application of parametric design process in the digital fabrication of cellular solids inspired structures by 3d printing in model scale. Two proposal will be presented. Both are devised according to the idea of creating resistant wireframe cellular structure with zero-waste of printing material. The methodology was based in the application of three steps design science research into two different parametric patterns: diagrid and voronoi. It is shown the analytic description of both processes with 3d printed models. The conclusion is that the diagrid pattern offers better control of the design than the voronoi.

Conference full papers:

Palavras-chave: Cellular solids; Metamaterials; 3d printing; Parametric Design; Architecture Design,

Palavras-chave:

DOI: 10.5151/sigradi2020-119

Referências bibliográficas
  • [1] Abueidda, D. W., Bakir, M., Abu Al-Rub, R. K., Bergström, J. S., Sobh, N. A., Jasiuk, I. (2017). Mechanical properties of 3D printed polymeric cellular materials with triply periodic minimal surface architectures. Materials & Design, 122, 255- 267, Retrieved from ttps://doi.org/10.1016/j.matdes.2017.03.018
  • [2] Ajdari, A. (2008). Mechanical Behavior of cellular structures: a finite element study. (Master Thesis) Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts.
  • [3] Bhate D. (2019). Four Questions in Cellular Material Design. Materials (Basel, Switzerland), 12(7), 1060. Retrieved from https://doi.org/10.3390/ma12071060.
  • [4] Bueno, E. (2016). Diagramas de Voronoi. EM: BRAIDA, Frederico et al. (Orgs.). 101 conceitos de arquitetura e urbanismo na era digital. São Paulo: ProBooks.
  • [5] Chérrez, O. R. (2017). Diseño Paramétrico Generativo de Sólidos Celulares Funcionalmente Graduados. Graduation Work (Graduation work to obtaining the tittle of mechanical engineer) - Escuela Politécnica Nacional, Quito, Pichincha, 87 f.
  • [6] Erjavec, M. (2011). Mechanical properties of cellular materials. (online). Retrieved from: https://www.yumpu.com/en/document/read/17852638/mecha nical-properties-of-cellular-materials. Acessado em 19mar2020
  • [7] Etymonline (2020). Tessellated. [online] Retrieved from: https://www.etymonline.com/word/tessellated. Access 08jul2020.
  • [8] Flores R. M. (2007). NET.LAB: ¿Algoritmo versus arquitectura? Diagrama de Voronoi como herramienta de diseño. Revista de Arquitectura, 13(16), 46-53. doi:10.5354/0719-5427.2013.28202.
  • [9] Gibson, L. J.; Ashby, M. F. (1999). Cellular Solids: Structure and Properties. 2o. ed. Cambridge, Inglaterra: Cambridge University Press, 532 p.
  • [10] Leach N. (2017). Size Matters – why body architecture is the future of 3d printing. Architectural Design, 87:6, pp 76-83.
  • [11] Mamou-Mani, A. (2020). The Sandwaves. [online] Retrieved from: https://mamou-mani.com/project/the-sandwaves/.
  • [12] Moon, K. S. (2011). Diagrid structures for complex-shaped tall buildings. Procedia Engineering, 14, 1343-1350.
  • [13] Naboni, R.; Kunic, A. (2017). Design and Additive Manufacturing of Lattice-based Cellular Solids at Building Scale. SIGRADI, CONGRESO DE LA SOCIEDAD IBERO-AMERICANA DE GRÁFICA DIGITAL, 2017, Concepción, Chile. Conference paper. Retrieved from: https://www.researchgate.net/publication/321234750.
  • [14] Ozkil, A. (2017). Collective design in 3D printing: A large scale empirical study of designs, designers and evolution. Design Studies. 2017. Department of Mechanical Engineering, Technical University of Denmark. Retrieved from: https://www.researchgate.net/publication/316950506_Collecti ve_design_in_3D_printing_A_large_scale_empirical_study_o f_designs_designers_and_evolution.
  • [15] Sachin, J. (2015). Additive Manufacturing and Stress Analysis of Naturally and Artificially Obtained Cellular Structures. Thesis (Master of science in mechanical engineering) - University of Texas at Arlington. Arlington, Texas.
  • [16] Sakin M. K.; Caner, Y. K. (2017). 3d Printing of Buildings: Construction of the Sustainable Houses of the Future by BIM. Energy Procedia, 134, 7, 702-711. Retrieved from: http://www.sciencedirect.com/science/article/pii/S187661021 7346969.
  • [17] Schaedler, T. A., Carter, W. B. (2016). Architected Cellular Materials. Annual Review of Materials Research, 46, 187- 210.
  • [18] Speaks, M. (2002). Inteligência de Projeto. In: Sykes, K. (Ed.). O campo ampliado da arquitetura: antologia teórica 1993-2009. São Paulo: Cosac Naify. 156-164.
  • [19] Subrin, K.; Bressac, T. Garnier, S.; Ambiehl, A.; Paquet, E.; Furet, B. (2018). Improvement of the mobile robot location dedicated for habitable house construction by 3D printing. IFAC-Papers Online, 51, I. 11, 716-721. Retrieved from: http://www.sciencedirect.com/science/article/pii/S2405896318315295.
Como citar:

Rocha, Bruno Massara; Steiner, Ygor Facco; Venancio, Leonardo Valbão; Lauwers, Sara Rodrigues; "The 3d printing fabrication of cellular solids structures and its use in architecture", p. 878-885 . In: Congreso SIGraDi 2020. São Paulo: Blucher, 2020.
ISSN 2318-6968, DOI 10.5151/sigradi2020-119

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações