Artigo completo - Open Access.

Idioma principal | Segundo idioma

Testando o regime de altas energias do Universo: recentes avanços e próximos desafios

Testing the high-energy regime of the Universe: recent advances and upcoming challenges.

Graef, Leila ;

Artigo completo:

Com a expansão do Universo, a cosmologia nos permite trazer as pequenas escalas (próximas do comprimento de Planck) para o regime observável, nos fornecendo uma oportunidade única para acessar a física de altas energias do Universo primitivo e compreender os mecanismos que originaram tudo que hoje vemos no Universo. Nesta revisão são exploradas diversas previsões de modelos do Universo primordial possíveis de serem testadas com os dados recentes e futuros. Tais previsões nos permitem obter informações, a partir da cosmologia, sobre um regime de altas energias da física que de outra forma não seria acessível nem mesmo nos maiores aceleradores de partículas na Terra.

Artigo completo:

With the expansion of the Universe, cosmology allows us to bring the small scales (close to the Planck length) into the observable regime, providing us with a unique opportunity to access the high-energy physics of the early Universe and understand the mechanisms that gave rise to everything that we see today in the Universe. In this review, several predictions of models of the early Universe that can be tested with recent and future data are explored. Such predictions allow us to obtain information from cosmology about a high-energy regime of physics that would otherwise not be accessible even in the largest particle accelerators on Earth.

Palavras-chave: Cosmologia, Universo Primordial, Ondas Gravitacionais,

Palavras-chave: Cosmology, Primordial Universe, Gravitational Waves,

DOI: 10.5151/astrocientistas2021-7

Referências bibliográficas
  • [1] Benjamin P. Abbott et al. Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO’s First Observing Run. Phys. Rev. Lett., 118(12):121101, 2017. [Erratum: Phys.Rev.Lett. 119, 029901 (2017)].
  • [2] Robert Brandenberger. Limitations of an Effective Field Theory Treatment of Early Universe Cosmology. 8 2021.
  • [3] E. Moura-Santos, F. C. Carvalho, M. Penna-Lima, C. P. Novaes, and C. A. Wuensche. A Bayesian Estimate of the Cmb–large-scale Structure Cross-correlation. Astrophys. J., 826(2):121, 2016.
  • [4] Robert Brandenberger and Patrick Peter. Bouncing Cosmologies: Progress and Problems. Found. Phys., 47(6):797–850, 2017.
  • [5] Carla R. Almeida, Olesya Galkina, and Julio César Fabris. Quantum and Classical Cosmology in the Brans–Dicke Theory. Universe, 7(8):286, 2021.
  • [6] P. C. M. Delgado, M. B. Jesus, N. Pinto-Neto, T. Mourão, and G. S. Vicente. Baryogenesis in cosmological models with symmetric and asymmetric quantum bounces. Phys. Rev. D, 102(6):063529, 2020.
  • [7] Tays Miranda, Emmanuel Frion, and David Wands. Stochastic collapse. JCAP, 01:026, 2020.
  • [8] Nelson Pinto-Neto, Júlio C. Fabris, Júnior D. Toniato, Gustavo. S. Vicente, and Sandro D. P. Vitenti. Vector perturbations in bouncing cosmology. Phys. Rev. D, 101(12):123519, 2020.
  • [9] M. Campista, M. Novello, and J. M. Salim. The spectrum of scalar fluctuations of a bouncing universe. Int. J. Mod. Phys. A, 25:3095–3105, 2010.
  • [10] L. N. Barboza, L. L. Graef, and Rudnei O. Ramos. Warm bounce in loop quantum cosmology and the prediction for the duration of inflation. Phys. Rev. D, 102(10):103521, 2020.
  • [11] L. L. Graef. Constraining the spectrum of cosmological perturbations from statistical thermal fluctuations. Phys. Lett. B, 819:136418, 2021.
  • [12] Tirthabir Biswas, Robert Brandenberger, Tomi Koivisto, and Anupam Mazumdar. Cosmological perturbations from statistical thermal fluctuations. Phys. Rev. D, 88(2):023517, 2013.
  • [13] Robert Brandenberger, Leila L. Graef, Giovanni Marozzi, and Gian Paolo Vacca. Backreaction of super-Hubble cosmologi- cal perturbations beyond perturbation theory. Phys. Rev. D, 98(10):103523, 2018.
  • [14] L. Raul W. Abramo, Robert H. Brandenberger, and Viatcheslav F. Mukhanov. The Energy - momentum tensor for cosmological perturbations. Phys. Rev. D, 56:3248–3257, 1997.
  • [15] Viatcheslav F. Mukhanov, L. Raul W. Abramo, and Robert H. Brandenberger. On the Back reaction problem for gravitational perturbations. Phys. Rev. Lett., 78:1624–1627, 1997.
  • [16] F. Finelli, G. Marozzi, G. P. Vacca, and Giovanni Venturi. Energy momentum tensor of field fluctuations in massive chaotic inflation. Phys. Rev. D, 65:103521, 2002.
  • [17] F. Finelli, G. Marozzi, G. P. Vacca, and Giovanni Venturi. Energy momentum tensor of cosmological fluctuations during inflation. Phys. Rev. D, 69:123508, 2004.
  • [18] Patrick Martineau and Robert H. Brandenberger. The Effects of gravitational back-reaction on cosmological perturbations. Phys. Rev. D, 72:023507, 2005.
  • [19] Florencia Anabella Teppa Pannia, Santiago Esteban Perez Bergliaffa, and Nelson Pinto-Neto. Particle Production in Accelerated Thin Bubbles. 7 2021.
  • [20] Jerome Quintin, Yi-Fu Cai, and Robert H. Brandenberger. Matter creation in a nonsingular bouncing cosmology. Phys. Rev. D, 90(6):063507, 2014.
  • [21] W. S. Hipolito-Ricaldi, Robert Brandenberger, Elisa G. M. Ferreira, and L. L. Graef. Particle Production in Ekpyrotic Scenarios. JCAP, 11:024, 2016.
  • [22] L. L. Graef, W. S. Hipolito-Ricaldi, Elisa G. M. Ferreira, and Robert Brandenberger. Dynamics of Cosmological Perturbations and Reheating in the Anamorphic Universe. JCAP, 04:004, 2017.
Como citar:

Graef, Leila; "Testando o regime de altas energias do Universo: recentes avanços e próximos desafios", p. 59-72 . In: Anais do I Encontro Brasileiro de Meninas e Mulheres da Astrofísica, Gravitação e Cosmologia - As Astrocientistas. São Paulo: Blucher, 2022.
ISSN 2358-2359, DOI 10.5151/astrocientistas2021-7

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações