Literature Review - Open Access.

Idioma principal | Segundo idioma

TECNOLOGIAS PARA CONDICIONAMENTO DE AR MOVIDOS ÀS FONTES ALTERNATIVAS DE ENERGIA: UMA BREVE REVISÃO

TECHNOLOGIES FOR AIR CONDIOTIONING POWERED BY ALTERNATIVE ENERGY SOURCES A BRIEF REVIEW

Santos, Ana Caroline Neves dos ; Santos, Alex Álisson Bandeira ;

Literature Review:

Os sistemas de condicionamento de ar vêm sendo aplicados largamente para promoção de conforto humano e isso pode representar um consumo energético de até 30% no edifício. Embora os chillers elétricos ainda sejam amplamente usados para conforto térmico, os chillers de absorção têm se revelado como alternativa promissora para condicionamento de ar por utilizar fontes renováveis de energia (energia solar, gás natural, calor residual, geotérmica e de biomassa). Levando em consideração tais considerações, a busca por soluções eficientes, econômicas e ecológicas se torna evidente. Este artigo propõe uma sucinta revisão bibliográfica sobre chillers movidos às fontes de energia alternativas à energia elétrica. A conscientização da aplicação das fontes alternativas de energia nesses sistemas contribui com a pratica sustentável e com a diversificação da matriz energética.

Literature Review:

Air conditioning systems have been widely applied to promote human comfort and this can represent an energy consumption of up to 30% in building. Although electric chillers are still widely used for thermal comfort, absorption chillers have proved to be a promising alternative for air conditioning by using renewable energy sources (solar energy, natural gas, waste heat, geothermal and biomass). Taking these considerations into account, the search for efficient, economic and ecological solutions becomes evident. This article proposes a brief bibliographical review on chillers powered by alternative energy sources to electricity. Awareness of the application of alternative energy sources in these systems contributes to sustainable practice and the diversification of the energy matrix.

Palavras-chave: Chiller de absorção; Condicionamento de ar; Fontes alternativas de energia,

Palavras-chave: Absorption chiller; Air conditioning; Alternative energy sources,

DOI: 10.5151/siintec2021-207903

Referências bibliográficas
  • [1] "1 PETELA, Karolina; MANFRIDA, Giampaolo; SZLEK, Andrzej. Advantages of variable driving temperature in solar absorption chiller. Renewable Energy, v. 114, p. 716-724, dez 2017.
  • [2] 2 SILVA, Darly Henriques da. Protocolos de Montreal e Kyoto: pontos em comum e diferenças fundamentais. Revista Brasileira de Política Internacional, [S.L.], v. 52, n. 2, p. 155-172, dez. 2009.
  • [3] 3 International Energy Agency. World energy balances database (2018). 2020. Disponível em: https://www.iea.org/data-and-statistics?country=WORLD&fuel=Energy%20consumption&indicator=TFCbySource. Acesso em: 11 fev. 2021.
  • [4] 4 Empresa de Pesquisa Energética (org.). Balanço Energético Nacional 2020: Ano base 2019. Empresa de Pesquisa Energética, Rio de Janeiro. 2020. 292 p. Disponível em: https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-479/topico-528/BEN2020_sp.pdf. Acesso em: 11 fev. 2021.
  • [5] 5 SILVEIRA, Paula Galbiatti. Energia e mudanças climáticas: impactos socioambientais das hidrelétricas e diversificação da matriz energética brasileira. Opinión Jurídica, v. 17, n. 33, p. 123-148, 2018.
  • [6] 6 MURA, Paolo Giuseppe; INNAMORATI, Roberto. Design of a New System of High-power Efficiency Conditioning Cogeneration Energy for a Building of the University of Cagliari with Fossil Fuel Plants. Energy Procedia, v. 78, p.1111-1116, nov. 2015.
  • [7] 7 MEHMOOD, Sajid et al. Energetic, Economic and Environmental (3E) Assessment and Design of Solar-Powered HVAC Systems in Pakistan. Energies, v. 13, n. 17, p. 4333-4363, 21 ago. 2020.
  • [8] 8 ALLOUHI, Amine et al. Solar driven cooling systems: Ver updated review. Renewable and Sustainable Energy Reviews, v. 44, p. 159-181, 2015.
  • [9] 9 MANSOURI, Rami et al. Modelling and testing the performance of a 7omercial ammonia/water absorption chiller using Aspen-Plus platform. Energy, v. 93, p.2374-2383, dez. 2015.
  • [10] 10 SHE, Xiaohui; CONG, Lin; NIE, Binjian; LENG, Guanghui; PENG, Hao; CHEN, Yi; ZHANG, Xiaosong; WEN, Tao; YANG, Hongxing; LUO, Yimo. Energy-efficient and -economic technologies for air conditioning with vapor compression refrigeration: a comprehensive review. Applied Energy, v. 232, p. 157-186, dez. 2018.
  • [11] 11 SHIRAZI, Ali et al. A comprehensive, multi-objective optimization of solar-powered absorption chiller systems for air-conditioning applications. Energy Conversion And Management, v. 132, p. 281-306, jan. 2017.
  • [12] 12 LI, Zeyu Lia et al. Comprehensive evaluation of low-grade solar trigeneration system by photovoltaic-thermal collectors. Energy Conversion and Management, v. 215, n. 112895, april 2020.
  • [13] 13 AL-FALAHI, Adil et al. A New Design of ver Integrated Solar Absorption Cooling System Driven by ver Evacuated Tube Collector: a case study for 7omerci, iraq. Applied Sciences, v.10, n. 10, p. 3622-3645, 23 maio 2020.
  • [14] 14 MAO, Yunshou; WU, Jiekang; ZHANG, Wenjie. An Effective Operation Strategy for CCHP System Integrated with Photovoltaic/Thermal Panels and Thermal Energy Storage. Energies, [S.L.], v. 13, n. 23, p. 6418, 4 dez. 2020.
  • [15] 15 ALHAMI, M. Idrus et al. Energy Analysis for the Solar Thermal Cooling System in Universitas Indonesia. International Journal of Air-Conditioning and Refrigeration. Vol. 27, No. 3 (2019)
  • [16] 16 SARBU, Ioan et al. General review of solar-powered closed sorption refrigeration systems. Energy Conversion And Management, v. 105, p. 403-422, nov. 2015.
  • [17] 17 BALITSKIY, Sergey et al. Energy efficiency and natural gas consumption in the comercial of economic development in the European Union. Renewable And Sustainable Energy Reviews, v. 55, p.156-168, mar. 2016
  • [18] 18 ALCÂNTARA, S.C.s et al. Natural gas based trigeneration system proposal to an ice cream factory: an energetic and economic assessment. Energy Conversion And Management, v. 197, p. 111860, out. 2019.
  • [19] 19 SEMMARI, Hamza et al. Flare Gas Waste Heat Recovery: assessment of organic rankine cycle for electricity production and possible coupling with absorption chiller. Energies, v. 13, n. 9, p. 2265, 4 maio 2020.
  • [20] 20 ZARE, V.. A comparative thermodynamic analysis of two tri-generation systems utilizing low-grade geothermal energy. Energy Conversion And Management, v. 118, p. 264-274, jun. 2016.
  • [21] 21 KECECILER, Abdullah; ACAR, H. brahim; DOGEAN, Ayla . Thermodynamic analysis of the absorption refrigeration system with geothermal energy: an experimental study. Energy Conversion & Management , n. 41, p. 37-48, 2000.
  • [22] 22 THORNTON, J. W.; MCDOWELL, T. P.; HUGHES, P. J. Comparison of practical vertical ground heat exchanger sizing methods to a Fort Polk data/model benchmark. American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), 103, 1997
  • [23] 23 SEGURADO, R.; PEREIRA, S.; CORREIA, D.; COSTA, M.. Techno-economic analysis of a trigeneration system based on biomass gasification. Renewable And Sustainable Energy Reviews, v. 103, p. 501-514, abr. 2019
  • [24] 24 JABARI, Farkhondeh et al. Design and performance investigation of a biogas fueled combined cooling and power generation system. Energy Conversion And Management, v. 169, p. 371-382, ago. 2018.
  • [25] 25 FREIRE, Rafael Magalhães de Melo; SANTOS, Alex Álisson Bandeira; ALMEIDA, Antônio Gabriel Souza. Thermoeconomic evaluation of three proposals for the energy cogeneration unit powered by natural gas, biogas, or syngas. Journal Of The Brazilian Society Of Mechanical Sciences And Engineering, v. 42, n. 8, 440, 31 jul. 2020
  • [26] 26 PANTALEO, Antonio M et al. Energy Performance and Thermo-economic Assessment of a Microturbine-based Dual-fuel Gas-biomass Trigeneration System. Energy Procedia, v. 105, p. 764-772, maio 2017.
  • [27] 27 GHOLAMIAN, E.; ZARE, V.; MOUSAVI, Seyed Mostafa. Integration of biomass gasification with a solid oxide fuel cell in a combined cooling, heating and power system: a thermodynamic and environmental analysis. International Journal Of Hydrogen Energy, v. 41, n. 44, p. 20396-20406, nov. 2016. 28 IBRAHIM, Nasiru I.; AL-SULAIMAN, Fahad A.; ANI, Farid Nasir. A detailed parametric study of a solar driven double-effect absorption chiller under various solar radiation data. Journal Of Cleaner Production, v. 251, p. 119750, abr. 2020. 29 LINJAWI, Majid T.; TALAL, Qazi; AL-SULAIMAN, Fahad A.. Evaluation of solar thermal driven cooling system in office buildings in Saudi Arabia. E3S Web Of Conferences, [S.L.], v. 23, p. 05001, 2017."
Como citar:

Santos, Ana Caroline Neves dos; Santos, Alex Álisson Bandeira; "TECNOLOGIAS PARA CONDICIONAMENTO DE AR MOVIDOS ÀS FONTES ALTERNATIVAS DE ENERGIA: UMA BREVE REVISÃO", p. 416-423 . In: VII International Symposium on Innovation and Technology. São Paulo: Blucher, 2021.
ISSN 2357-7592, DOI 10.5151/siintec2021-207903

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações