Setembro 2025 vol. 12 num. 1 - XXXII Simpósio Internacional de Engenharia

Trabalho completo - Open Access.

Idioma principal | Segundo idioma

Tecnologia de Sensor de Bateria Inteligente em Veículos Comerciais: Benefícios, Limitações e Aplicações

Intelligent battery sensor Technology in Commercial Vehicles: Benefits, Limitations, and Applications

COSTA, Danilo Gonçalves ; MARTINES, Wilson Bernardo dos Santos ; MUNHOZ, Ronaldo Tadeu ;

Trabalho completo:

As baterias de baixa tensão são fontes de alimentação em veículos, que se tornaram cada vez mais essenciais devido à crescente demanda por sistemas elétricos/eletrônicos. Portanto, o gerenciamento da bateria está se tornando cada vez mais importante para garantir a disponibilidade de energia nos veículos comerciais. O sensor inteligente de bateria (IBS) é capaz de monitorar informações cruciais, como tensão, consumo de corrente, capacidade e dados, a partir dos quais é possível determinar o estado de saúde da bateria, garantindo o funcionamento adequado do sistema elétrico e mantendo uma reserva mínima de energia para a partida. Neste artigo, discutiremos os benefícios e as limitações do uso do IBS de um veículo comercial. Os dados fornecidos dão suporte à manutenção preditiva, permitindo o diagnóstico de mau funcionamento do sistema elétrico e de problemas de desempenho da bateria. O motorista não experimenta 100% das funcionalidades do IBS, pois atualmente ele só fornece informações sobre o nível de carga da bateria e depende de uma Unidade de Controle Eletrônico para gerenciar os dados gerados. No entanto, sua aplicação é eficaz para reserva de carga e análise de falhas elétricas no sistema de geração de energia, como problemas com o regulador de tensão do alternador.

Trabalho completo:

Low-voltage batteries are power supplies in vehicles, which have become increasingly essential due to the growing demand for electrical/electronic systems. Therefore, battery management is becoming more and more important to ensure the availability of power in commercial vehicles. The intelligent Battery sensor (IBS) is capable of monitoring crucial information, such as voltage, current consumption, capacity and data from which it is possible to determine battery?s state of health, ensuring proper functioning of the electrical system and keeping a minimum energy reserve for cranking. We will discuss in this paper the benefits and limitations of using the IBS of a commercial vehicle. The data provided supports predictive maintenance by enabling the diagnosis of electrical system malfunctions and battery performance issues. The driver does not experience 100% of the functionalities of IBS, as it currently only provides battery charge level information and relies on an Electronic Control Unit to manage the generated data. However, its application is effective for charge reserve and analysis of electrical faults in the power generation system, such as issues with the alternator's voltage regulator.

Palavras-chave: -,

Palavras-chave: -,

DOI: 10.5151/simea2025-PAP57

Referências bibliográficas
  • [1] Schöllmann, Matthias, Marc Rosenmayr, and Joachim Olk. Battery monitoring with the intelligent battery sensor during service, standby and production. No. 2005-01-056 SAE Technical Paper, 2005.
  • [2] Olarte, Javier, et al. "A battery management system with EIS monitoring of life expectancy for lead–acid batteries." Electronics 10.11 (2021): 1228.
  • [3] Wang, Pengcheng, and Changqing Zhu. "Summary of lead-acid battery management system." IOP Conference Series: Earth and Environmental Science. Vol. 440. No. 2. IOP Publishing, 2020.
  • [4] Vaish, Shivam Anand, Naqqash Ghaffar Abbassi, and Thomas Zimmermann. "A high precision current measurement device for Battery Management Systems (BMS)." 23. DESIGN&ELEKTRONIK. 2016.
  • [5] F. Sun, X. Hu, Y. Zou, and S. Li, “A Review on State-of-Charge Estimation for Lithium-Ion Batteries,” IEEE Transactions on Industrial Electronics, vol. 60, no. 4, pp. 1461–1471, Apr. 2013.
  • [6] Saha, Arijit, et al. "An Improved PMOS-Based Low Dropout Regulator Design for Large Loads." arXiv preprint arXiv:2209.12726 (2022).
  • [7] Kim, Seung-Han, et al. "A gateway system for an automotive system: LIN, CAN, and FlexRay." 2008 6th IEEE International Conference on Industrial Informatics. IEEE, 2008.
  • [8] Li, Zixuan, et al. "RC-Oscillator-Based Battery-Less Wireless Sensing System Using RF Resonant Electromagnetic Coupling." IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences 107.5 (2024): 727-740.
  • [9] Heim, Andreas, and Tilo Streibl. The intelligent battery sensor: key component for a scaleable motor-vehicle-independent energy management system. No. 2006-21-0001. SAE Technical Paper, 2006.
  • [10] Çadırcı, Y., and Y. Özkazanç. "Microcontroller-based on-line state-of-charge estimator for sealed lead–acid batteries." Journal of Power Sources 129.2 (2004): 330-342.
  • [11] R. Bosch GmbH, Automotive Electrics and Electronics: Systems and Components, Networking and Hybrid Drive, 5th ed., Springer Vieweg, 2014.
  • [12] H. He, R. Xiong, and J. Fan, “Evaluation of Lithium-Ion Battery Equivalent Circuit Models for State of Charge Estimation by an Experimental Approach,” Energies, vol. 4, no. 4, pp. 582–598, 2011.
  • [13] Wang, Yuefei, et al. "Real-time vehicle energy management system based on optimized distribution of electrical load power." Applied Sciences 6.10 (2016): 285.
  • [14] Jackey, R., "A Simple, Effective Lead-Acid Battery Modeling Process for Electrical System Component Selection," SAE Technical Paper 2007-01-0778, 2007
  • [15] Karden, Eckhard, et al. "Energy storage devices for future hybrid electric vehicles." Journal of Power Sources 168.1 (2007): 2-11.
  • [16] C. Lohmeier and T. Veik, “Battery Management With an Intelligent Battery Sensor Is Vital to the Success of Future Automotive Designs,” Battery Power Online, Oct. 8, 2014. https://www.batterypoweronline.com visited on 14.05.2025.
  • [17] C. C. Chan, “The state of the art of electric, hybrid, and fuel cell vehicles,” Proceedings of the IEEE, vol. 95, no. 4, pp. 704–718, Apr. 2007.
  • [18] S. N. P. R. Singh and K. B. S. R. Anjaneyulu, “Design of Intelligent Battery Management System for Electric Vehicles,” in 2013 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Bangalore, India, 2013, pp. 1–6.
  • [19] Ostadian, Reihaneh, et al. "Intelligent energy management systems for electrified vehicles: Current status, challenges, and emerging trends." IEEE Open Journal of Vehicular Technology 1 (2020): 279-295.
  • [20] Fors, Carina, Katja Kircher, and Christer Ahlström. "Interface design of eco-driving support systems–Truck drivers’ preferences and behavioural compliance." Transportation Research Part C: Emerging Technologies 58 (2015): 706-7
  • [21] Leong, Wai Yie, Yuan Zhi Leong, and Wai San Leong. "Human-Machine Interaction in the Electric Vehicle Battery Industry." 2024 10th International Conference on Applied System Innovation (ICASI). IEEE, 2024.
Como citar:

COSTA, Danilo Gonçalves; MARTINES, Wilson Bernardo dos Santos; MUNHOZ, Ronaldo Tadeu; "Tecnologia de Sensor de Bateria Inteligente em Veículos Comerciais: Benefícios, Limitações e Aplicações", p. 272-276 . In: Anais do XXXII Simpósio Internacional de Engenharia. São Paulo: Blucher, 2025.
ISSN 2357-7592, DOI 10.5151/simea2025-PAP57

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações