Agosto 2018 vol. 5 num. 1 - IX Encontro Científico de Física Aplicada

Artigo - Open Access.

Idioma principal

Storage of oxygen in the interconversion R2O2S/R2O2SO4 obtained by thermal decomposition of sulfonate rare earth

Carvalho, M.A. ; Machado, L.C. ; Goldner, S. ; Rodrigues, R.V. ; Passos, C.A.C. ;


In this study, two compounds presenting characteristics different from each other were produced from the reaction between hydrated Eu+3 sulfate and Ba+2 diphenylamine-4-sulfonate using, respectively, aqueous solution for producing the Eu+3(C12H10NSO3)3.7H2O (A) compound and water/ethyl alcohol (7:1) solution for the Eu+3(C12H10NSO3)3.5H2O (B) production.The presence of alcohol molecules in the solution will interfere in the structural arrangement of anionic surfactant DAS- (diphenylamine-4-sulfonate) around the metal ions Eu3 allowing differentiation in the stoichiometric formulas, morphology, and thermal properties of these compounds and their derivatives. Thus, when treating both compounds under oxidizing atmosphere, we found different temperatures of the water loss and conversion of the intermediate pair oxydisulfate [Eu2O(SO4)2]/dioxysulfate [(Eu2O2SO4)]. However, the effect of water/surfactant/alcohol interactions in the metal ion structural arrangement becomes still more evident under reducing atmosphere. After this thermal treatment, significant changes were observed in the morphological characteristics and physical properties of the (Eu2O2S oxysulfide) in compound B with respect to compound A.


Palavras-chave: Rare earth, Storage oxygen, Thermal analisys,

Palavras-chave: ,

DOI: 10.5151/ecfa2018-18

Referências bibliográficas
  • [1] Zhang H, Jiang H, Gong H, Sun Z-L. Characteristics of thermal decomposition products of rare earth, alkali earth metal and transition metal p-toluenesulfonates. J. Therm. Anal. Calorim. 2005;79:731–5. doi:10.1007/s10973-005-0604-y. 2. Wang M, Jiang H, Wang Z-C. Dehydration studies of Co(II), Cu(II) and Zn(II) methanesulfonates. J. Therm. Anal. Calorim. 2006;8:751–4. doi:10.1007/s10973-005-7064-2. 3. Delgado S, Molina-Ontoria A, Medina M-E, Pastor C-J, Jimenez-Aparicio R, Priego JL. An unexpected sulfinate– sulfonate mixed coordination polymer of copper(II). Inorg. Chem. Commun. 2006;9:1289–92. doi:10.1016/j.inoche.2006.06.026. 4. Yang J, Li L, Ma J-F, Liu Y-Y, Ma JC. Two new barium sulfonates with pillared layered structures. J. Mol. Struct. 2006;788:43–8. doi:10.1016/j.molstruc.2005.1016. 5. Selvan R-K, Gedanken A. Synthesis and characterization of hierarchically structured La2O2M@C:Eu3+. Eur. J. Inorg. Chem. 2010;0: 5685–9 doi: 10.1002/ejic.201000632. 6. Llanos J, Sanchez V, Mujica C, Buljan A. Synthesis, physical properties, and electronic structure of rare earths oxysulfides Ln2O2S (Ln=Sm, Eu). Mater. Res. Bull. 2002;379:2285–9 doi:10.1016/S0025- 5408(02)00936-4. 7. Bang J, Abboudi M, Abrams B, Hooloway P. Combustion synthesis of Eu, Tb and Tm doped Ln2O2S(Ln=Y,La,Gd) phosphors. J. Lumin. 2004;106:177–85. doi:10.1016/j.jlumin.2003.09.005. 8. Zhao F, Yuan M, Zhang W, Gao S. Monodisperse lanthanide oxysulfide nanocrystals. J. Am. Chem. Soc. 2006;128:11758–9. doi:10.1021/ja0638410. 9. Ikeue K, Kawano T, Eto M, Zhang D, Machida M. X-ray structural study on the different redox behaviors of La and Pr oxysulfates/oxysulfides. J. Alloys and Compd. 2008;451:338–40. doi:10.1016/j.jallcom.2007.04.145. 10. Zhang D, Yoshioka F, Ikeue K, Machida M. Synthesis and oxygen release/storage properties of Cesubstituted La-oxysulfates, (La1- XCeX)O2SO4. Chem. Mater. 2008;20:6697–703. doi:10.1021/cm801629b. 1 Machida M, Kawamura K, Ito K, Ikeue K. Large capacity oxygen storage by lanthanide oxysulfate/oxysulfide systems. Chem. Mater. 2005;17:1487– 92. doi:10.1021/cm0479640. 12. Machida M, Kawano T, Eto M, Zhang D, Ikeue K. Ln dependence of the large-capacity oxygen storage/release property of Ln oxysulfate/oxysulfide systems. Chem. Mater. 2007;19:954–60. doi:10.1021/cm062625n. 13. Machado L-C, Marins A-A-L, Muri E-J-B, Biondo A, Matos J-R, Mazali I-O. Complexation of the Fe(III) and Fe(II) sulphates with diphenyl-4-amine barium sulphonate (DAS): synthesis, thermogravimetric and spectroscopic studies. J. Therm. Anal. Calorim. 2009;97:289–96. doi:10.1007/s10973- 009-0259- 14. Yang J, Ma J-F, Wu D-M, Guto L-P, Liu J-F. Syntheses, crystal structures and characterization of divalent transition metal sulfonate complexes with o-phenanthroline. J. Mol. Struct. 2003;657:333–4 doi:10.1016/S0022- 2860(03)00428-9. 15. Charbonner F. Thermal behavior of some compounds of methanesulfonic acid with transition metals. Thermochim. Acta. 1979;33:31–9. doi:10.1016/0040-6031(79)87027-6. 16. de Maria M-F-V, Matos J-R, de Farias R-F. Synthesis, characterization and a thermal (TG-DSC) study of gadolinium and lutetium methanesulfonate coordination compounds with pyridine-N-oxide and 2-, 3- and 4- picoline-N-oxides. J. Serbian Chem. Soc. 2005;70:1041–8. doi:10.2298/JSC0509041d. 17. de Moura M-F-V, Matos J-R, de Farias R-F. Thermal degradation study of gadolinium and lutetium methanesulfonates. Thermochim. Acta. 2004;414:159–66. doi:10.1016/j.tca.2003.12.020. 18. dos Santos A-V, Matos J-R. Dehydration studies of rare earth ptoluenesulfonate hydrates by TG/DTG and DSC. J. Alloys and Compd. 2002;344:195–8. doi:10.1016/S0925- 8388(02)00339-0. 19. dos Santos A-V. p-Toluene sulfonates of earth rare hydrated:synthesis, characterization and study thermoanalytic in different atmospheres. Ph.D. Thesis, Chemistry Institute of São Paulo, 1998. 20. Karsruhe FIZ, ICSD Collection code 95819. 2 Machado L-C, D’azeredo M-T-O, Corrêa H-P-S, Matos J-R, Mazali I-O. Formation of oxysulfide Ln2O2S and oxysulfate Ln2O2SO4 phases in the thermal decomposition process of lanthanide sulfonates (Ln = La, Sm). J. Therm. Anal. Calorim. 2012; 107:305– 1 doi:10.1007/s10973-011-1451-7. 22. JCPDS—International Centre for Diffraction Data, 1996;26:1418.
Como citar:

Carvalho, M.A.; Machado, L.C.; Goldner, S.; Rodrigues, R.V.; Passos, C.A.C.; "Storage of oxygen in the interconversion R2O2S/R2O2SO4 obtained by thermal decomposition of sulfonate rare earth", p. 90-94 . In: . São Paulo: Blucher, 2018.
ISSN 2358-2359, DOI 10.5151/ecfa2018-18

últimos 30 dias | último ano | desde a publicação