Conference full papers - Open Access.

Idioma principal

Spatiotemporal Modeling of COVID-19 Spread in Built Environments

Spatiotemporal Modeling of COVID-19 Spread in Built Environments

Gomez, Paula; Hadi, Khatereh; Kemenova, Olga; Swarts, Matthew;

Conference full papers:

This research proposes a Spatiotemporal Modeling approach to understand the role of architecture, specifically the built environment, in the COVID-19 pandemic. The model integrates spatial and temporal parameters to calculate the probability of spread of and exposure to SARS-CoV-2 virus (responsible of COVID-19 disease) due to the combination of four aspects: Spatial configuration, organizational schedules, people’s behavior, and virus characteristics. Spatiotemporal Modeling builds upon the current models of building analytics for architecture combined with predictive models of COVID-19 spread. While most of the current research on COVID-19 spread focuses on mathematical models at regional scales and the CDC guidelines emphasizing on human behavior, our research focuses on the role of buildings in this pandemic, as the intermediate mechanism where human and social activities occur. The goal is to understand the most significant parameters that influence the virus spread within built environments, including human-to-human, fomite (surface-to-human), and airborne ways of transmission, with the purpose of providing a comprehensive parametric model that may help identify the most influential design and organizational decisions for controlling the pandemic. The proof-of-concept study is a healthcare facility.

Conference full papers:

Palavras-chave: Spatiotemporal modeling, Agent-based simulation, COVID-19, Virus spread, Built environments, Human behavior, Social distancing,


DOI: 10.5151/sigradi2020-134

Referências bibliográficas
  • [1] Biswas, K., & Sen, P. (2020). Space-time dependence of corona virus (COVID-19) outbreak.
  • [2] Bourouiba, L. (2020). Turbulent Gas Clouds and Respiratory Pathogen Emissions: Potential Implications for Reducing Transmission of COVID-19. JAMA.
  • [3] Casanova, L. M., Jeon, S., Rutala, W. A., Weber, D. J., & Sobsey, M. D. (2010). Effects of air temperature and relative humidity on coronavirus survival on surfaces. Applied and Environmental Microbiology, 76(9), 2712–2717.
  • [4] CDC. (2020). Interim Infection Prevention and Control Recommendations for Healthcare Personnel During the Coronavirus Disease 2019 (COVID-19) Pandemic.
  • [5] Chang, S. L., Harding, N., Zachreson, C., Cliff, O. M., & Prokopenko, M. (2020). Modelling transmission and control of the COVID-19 pandemic in Australia.
  • [6] Chin, A. W. H., Chu, J. T. S., Perera, M. R. A., Hui, K. P. Y., Yen, H.-L., Chan, M. C. W., Peiris, M., & Poon, L. L. M. (2020). Stability of SARS-CoV-2 in different environmental conditions. The Lancet Microbe, 0(0).
  • [7] Dietz, L., Horve, P. F., Coil, D. A., Fretz, M., Eisen, J. A., & Van Den Wymelenberg, K. (2020). 2019 Novel Coronavirus (COVID-19) Pandemic: Built Environment Considerations To Reduce Transmission. MSystems, 5(2).
  • [8] Giuliani, D., Dickson, M. M., Espa, G., & Santi, F. (2020). Modelling and predicting the spatio-temporal spread of Coronavirus disease 2019 (COVID-19) in Italy.
  • [9] Gomez Zamora, P. A. (2017). Spatiotemporal occupancy in building settings (Doctoral dissertation, Georgia Institute of Technology).
  • [10] Gomez-Zamora, P., Bafna, S., Zimring, C., Do, E., & Romero Vega, M. (2019). Spatiotemporal Occupancy for Building Analytics.
  • [11] Guo, Z.-D., Wang, Z.-Y., Zhang, S.-F., Li, X., Li, L., Li, C., Cui, Y., Fu, R.-B., Dong, Y.-Z., Chi, X.-Y., Zhang, M.-Y., Liu, K., Cao, C., Liu, B., Zhang, K., Gao, Y.-W., Lu, B., & Chen, W. (2020). Aerosol and Surface Distribution of Severe Acute Respiratory Syndrome Coronavirus 2 in Hospital Wards, Wuhan, China, 2020. Emerging Infectious Diseases, 26(7).
  • [12] Hadi, K. (2020) Agent-based Simulation For Evaluating The Impacts Of Design On Nurses’ Spatiotemporal Experience. (Doctoral dissertation, Georgia Institute of Technology).
  • [13] Hamzah, F. A. B., Lau, C. H., Nazri, H., Ligot, D. V., Lee, G., Tan, C. L., Shaib, M. K., Zaidon, U. H. B., Abdullah, A. B., Chung, M. H., Ong, C. H., Chew, P. Y., & Salunga, R. E. (2020). CoronaTracker: World-wide COVID-19 Outbreak Data Analysis and Prediction. The Bulletin of the World Health Organization, March 18th.
  • [14] Huang, Y., Yang, L., Dai, H., Tian, F., & Chen, K. (2020). Bull World Health Organ. E-pub: 16.
  • [15] Jia, J., Ding, J., Liu, S., Liao, G., Li, J., Duan, B., Wang, G., & Zhang, R. (2020). Modeling the Control of COVID-19: Impact of Policy Interventions and Meteorological Factors.
  • [16] Kampf, G., Todt, D., Pfaender, S., & Steinmann, E. (2020). Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. In Journal of Hospital Infection (Vol. 104, Issue 3, pp. 246–251). W.B. Saunders Ltd.
  • [17] Kim, Y., Ryu, H., & Lee, S. (2018). Agent-based modeling for super-spreading events: A case study of mers-cov transmission dynamics in the republic of korea. International Journal of Environmental Research and Public Health, 15(11).
  • [18] Lauer, S. A., Grantz, K. H., Bi, Q., Jones, F. K., Zheng, Q., Meredith, H. R., ... & Lessler, J. (2020). The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application. Annals of internal medicine, 172(9), 577-582.
  • [19] Lin, Q., Zhao, S., Gao, D., Lou, Y., Yang, S., Musa, S. S., Wang, M. H., Cai, Y., Wang, W., Yang, L., & He, D. (2020). A conceptual model for the coronavirus disease 2019 (COVID-19) outbreak in Wuhan, China with individual reaction and governmental action. International Journal of Infectious Diseases, 93, 211–216.
  • [20] Liu, Y., Ning, Z., Chen, Y., Guo, M., Liu, Y., Gali, N. K., Sun, L., Duan, Y., Cai, J., Westerdahl, D., Liu, X., Xu, K., Ho, K., Kan, H., Fu, Q., & Lan, K. (2020). Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals. Nature. Lu, J., Gu, J., Li, K., Xu, C., Su, W., Lai, Z., Zhou, D., Yu, C., Xu, B., & Yang, Z. (2020). COVID-19 Outbreak Associated with Air Conditioning in Restaurant, Guangzhou, China, 20 Emerging Infectious Diseases, 26(7).
  • [21] Ma, Z. (2020). Spatiotemporal fluctuation scaling law and metapopulation modeling of the novel coronavirus (COVID-19) and SARS outbreaks.
  • [22] Marr, Miller, Prather, Haas, Bahnfleth,Corsi, Tang, Hermann, Pollitt et al. (2020)
  • [23] Moriyama, M., Hugentobler, W. J., & Iwasaki, A. (2020). Seasonality of Respiratory Viral Infections. Annual Review of Virology, 7(1). 012420-022445
  • [24] Nadim, S. S., Ghosh, I., & Chattopadhyay, J. (2020). Short-term predictions and prevention strategies for COVID-2019: A model based study.
  • [25] Pawar, S., Stanam, A., Chaudhari, M., & Rayudu, D. (2020). Effects of temperature on COVID-19 transmission. MedRxiv, 2020.03.29.20044461.
  • [26] Peng, L., Yang, W., Zhang, D., Zhuge, C., & Hong, L. (2020). Epidemic analysis of COVID-19 in China by dynamical modeling.
  • [27] Rabajante, J. F. (2020). Insights from early mathematical models of 2019-nCoV acute respiratory disease (COVID-19) dynamics.
  • [28] Riddell, S., Goldie, S., Hill, A. et al. The effect of temperature on persistence of SARS-CoV-2 on common surfaces. Virol J 17, 145 (2020).
  • [29] Schuit, M., Gardner, S., Wood, S., Bower, K., Williams, G., Freeburger, D., & Dabisch, P. (2020). The Influence of Simulated Sunlight on the Inactivation of Influenza Virus in Aerosols. The Journal of Infectious Diseases, 221(3), 372—378.
  • [30] Setti, L., Passarini, F., De Gennaro, G., Barbieri, P., Perrone, M. G., Borelli, M., Palmisani, J., Di Gilio, A., Piscitelli, P., & Miani, A. (2020). Airborne Transmission Route of COVID- 19: Why 2 Meters/6 Feet of Inter-Personal Distance Could Not Be Enough. International Journal of Environmental Research and Public Health, 17(8), 2932.
  • [31] van Doremalen, N., Bushmaker, T., Morris, D. H., Holbrook, M. G., Gamble, A., Williamson, B. N., Tamin, A., Harcourt, J. L., Thornburg, N. J., Gerber, S. I., Lloyd-Smith, J. O., de Wit, E., & Munster, V. J. (2020). Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. New England Journal of Medicine.
  • [32] Yan, J., Grantham, M., Pantelic, J., Bueno de Mesquita, P. J., Albert, B., Liu, F., Ehrman, S., & Milton, D. K. (2018). Infectious virus in exhaled breath of symptomatic seasonal influenza cases from a college community. Proceedings of the National Academy of Sciences, 115(5), 1081 LP – 1086.
  • [33] Zhang, R., Li, Y., Zhang, A. L., Wang, Y., & Molina, M. J. (2020). Identifying airborne transmission as the dominant route for the spread of COVID-19. Proceedings of the National Academy of Sciences.
  • [34] Jones, N. R, Qureshi Z. U., Temple, R.J, Larwood. J.P J, Greenhalgh, T., Bourouiba, L. et al. (2020) Two metres or one: what is the evidence for physical distancing in covid- 19? BMJ 2020; 370 :m3223
  • [35] Appendices. (n.d.). Retrieved October 26, 2020, from tracing/contact-tracing-plan/appendix.html
Como citar:

Gomez, Paula; Hadi, Khatereh; Kemenova, Olga; Swarts, Matthew; "Spatiotemporal Modeling of COVID-19 Spread in Built Environments", p. 991-996 . In: Congreso SIGraDi 2020. São Paulo: Blucher, 2020.
ISSN 2318-6968, DOI 10.5151/sigradi2020-134

últimos 30 dias | último ano | desde a publicação