Conference full papers - Open Access.

Idioma principal

SISCOM: Cooperative Multi-Robot Systems in Construction

SISCOM: Cooperative Multi-Robot Systems in Construction

González-Böhme, Luis Felipe; García-Alvarado, Rodrigo; Quitral-Zapata, Francisco Javier; Valenzuela-Astudillo, Eduardo Antonio;

Conference full papers:

We present an ongoing research project focused on the development of more efficient setups for cooperative multi-robot systems in 3D-printed construction. Early kinematic simulations of a mobile robotic cell prototype with two ceiling-mounted orbiting manipulators have provided new insights into 3D printing topology. An extrusion nozzle is mounted on each collaborative robot whose primary function is to match the extrusion path to the print contour while they move along a circular path. The challenge of setting up on site a semi-structured environment for cooperative multi-robot 3D printing led us to think up a new species of construction 3D printer.

Conference full papers:

Palavras-chave: 3D-Printed construction, Cooperative multi-robot system, Mobile robotic cell, Collaborative robot, Robots in architecture,

Palavras-chave:

DOI: 10.5151/sigradi2020-48

Referências bibliográficas
  • [1] Apis Cor. (2019). Apis Cor 3D printed in Dubai. Retrieved October 26, 2020, from https://www.apis-cor.com/dubai-project
  • [2] Barnett, E., & Gosselin, C. (2015). Large-scale 3D printing with a cable-suspended robot. Additive Manufacturing, 7(2015), 27–
  • [3] 44.
  • [4] Big Delta. (2017). Retrieved 26 October 2020, from https://www.3dwasp.com/en/giant-3d-printer-bigdelta-wasp- 12mt/
  • [5] Bosscher, P., Ii, R. L. W., Bryson, L. S., & Castro-Lacouture, D. (2007). Cable-suspended robotic contour crafting system. Automation in Construction, 17(1), 45–5
  • [6] Buswell, R. A., Soar, R. C., Gibb, A. G. F. & Thorpe, A. (2007). Freeform Construction: Mega-scale Rapid Manufacturing for construction. Automation in Construction, 16, 2, 224-231.
  • [7] Buswell, R., Leal de Silva, W., Jones, S., & Dirrenberger, J. (2018). 3D printing using concrete extrusion: A roadmap for research. Cement and Concrete Research, 112, 37-49.
  • [8] CChC. (2018). Informe MACh 48 - Macroeconomía y Construcción. Retrieved from https://www.cchc.cl/centro-de- informacion/publicaciones/publicaciones-mach/informe- mach-48
  • [9] Cesaretti, G., Dini, E., De Kestelier, X., Colla, V., & Pambaguian,
  • [10] L. (2014). Building components for an outpost on the Lunar soil by means of a novel 3D printing technology. Acta Astronautica, 93, 430-450.
  • [11] COBOD. (2012). BOD2: Modular 3D construction printer. Retrieved July, 2020, from https://cobod.com/bod2
  • [12] CORFO & PMG. (2016). Hoja de ruta de Programa Nacional de Productividad y Construcción Sustentable. Santiago de Chile, Chile. Retrieved from https://www.aoa.cl/wp- content/uploads/2016/03/PMG-Informe-final-Hoja-de-Ruta- Construye-2025.pdf
  • [13] Crane. (2019). Retrieved 26 October 2020, from https://www.3dwasp.com/en/3d-printer-house-crane-wasp/
  • [14] CyBe Construction. (2020). Retrieved 26 October 2020, from https://cybe.eu/technology/3d-printers/
  • [15] CyBe. (2012). 3D concrete printers Retrieved July, 2020, from https://cybe.eu/technology/3d-printers
  • [16] Dini, E. (2019). D-shape. Italy: Dini engineering s.r.l. Retrieved from https://d-shape.com
  • [17] D-Shape Looks to 3D Print Bridges, a Military Bunker, and Concrete/Metal Mixture - 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing. (2014). Retrieved 26 October 2020, from https://3dprint.com/27229/d-shape-3d- printed-military/
  • [18] Ghaffar, S. H.; Corker, J. & Fan, M. (2018). Additive manufacturing technology and its implementation in construction as an eco- innovative solution. Automation in Construction, 93(October 2017), 1-11.
  • [19] International Organization for Standardization. (2013). Robots and robotic devices — Coordinate systems and motion nomenclatures (ISO Standard No. 9787:2013).Retrieved from https://www.iso.org/standard/59444.html
  • [20] Kazemian A., X. Yuan, E. Cochran, B. Khoshnevis (2017). Cementitious materials for construction-scale 3D printing: Laboratory testing of fresh printing mixture, Constr. Build. Mater. 145 639–647.
  • [21] Kazemian, A., Yuan, X., Meier, R., Cochran, E. & Khoshnevis, B (2017). Construction-scale 3D printing: Shape stability of fresh printing concrete. Proceedings of the ASME 2017 12th International Manufacturing Science and Engineering Conference, June 4-8, 2017, Los Angeles, CA, USA.
  • [22] Khoshnevis, B., Hwang, D., Yao, K. T., & Yeh, Z. (2006). Mega- scale fabrication by contour crafting. International Journal of Industrial and Systems Engineering, 1(3), 301-320.
  • [23] Khoshnevis, B., Russell, R., Kwon, H. & Bukkapatnam, S. (2001). Crafting large prototypes, IEEE Robotics & Automation Magazine, 8, (3), 33-42.
  • [24] Lim, S., Buswell, R. A., Le, T. T., Austin, S. A., Gibb, A. G. F. & Thorpe, T. (2012). Developments in construction-scale additive manufacturing processes. Automation in Construction, 21, (2012), 262-268.
  • [25] Ma, G. W.; Wang, L. & Ju, Y. (2018). State-of-the-art of 3D printing technology of cementitious material-An emerging technique for construction. Science China Technological Sciences, 61(4), 475-495.
  • [26] Perkins, I. & Skitmore, M. (2015). Three-dimensional printing in the construction industry: A review. International Journal of Construction Management, 15(1), 1-9.
  • [27] Putzmeister (2020). Retrieved from https://www.putzmeister.com/documents/20152/53599/MT+3 213-10+ES+-+P12.pdf
  • [28] Véliz-Reyes, A., Jabi, W., Gomaa, M., Chatzivasileiadi, A., Ahmad,
  • [29] L. & Wardhana, N. (2019). Negotiated matter: a robotic exploration of craft-driven innovation. Architectural Science Review, 62(5), 398-408.
  • [30] WASP. (2015). BigDelta WASP 12m. Retrieved from https://www.3dwasp.com/en/giant-3d-printer-bigdelta-wasp- 12mt
  • [31] WASP. (2018). Crane WASP. Retrieved from https://www.3dwasp.com/en/3d-printer-house-crane-wasp
Como citar:

González-Böhme, Luis Felipe; García-Alvarado, Rodrigo; Quitral-Zapata, Francisco Javier; Valenzuela-Astudillo, Eduardo Antonio; "SISCOM: Cooperative Multi-Robot Systems in Construction", p. 349-356 . In: Congreso SIGraDi 2020. São Paulo: Blucher, 2020.
ISSN 2318-6968, DOI 10.5151/sigradi2020-48

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações