Setembro 2025 vol. 12 num. 1 - XXXII Simpósio Internacional de Engenharia
Trabalho completo - Open Access.
Rumo à Mobilidade de Baixo Carbono: O Impacto de Misturas de Combustíveis Renováveis em Veículos de Passageiros
Towards Low-Carbon Mobility: The Impact of Renewable Fuel Blends on Passenger Vehicles
MARTINS, Mario Eduardo Santos ; LANZANOVA, THOMPSON DIÓRDINIS METZKA ; FAGUNDEZ, Jean Lucca Souza ; GUILHERME, Roger Tadeu Gondim ; ROVAI, Fernando Fusco ; GOMES, Luísa Clemente Magalhães ; HAUSEN, Roberto Begnis ;
Trabalho completo:
Este estudo avalia o potencial de uma mistura composta por 7% de gasolina sintética e 93% de etanol anidro em volume para a descarbonização do setor de transporte de passageiros no Brasil. Três cenários de produção de eGas utilizando o processo Ethanol-to-Gasoline (ETG) foram analisados com base em diferentes matérias-primas: etanol de milho de 1ª geração, etanol de cana-de-açúcar de 1ª geração e etanol de bagaço de cana-de-açúcar de 2ª geração. A análise abrangeu a síntese do etanol, uso de eletricidade, energia térmica do biometano e produção de hidrogênio via eletrólise. Os resultados mostram que o eGas oriundo do etanol 2G apresenta a menor CI (6,65 gCO?eq/MJ), seguido pelo etanol de cana 1G (22,97) e milho 1G (25,05). Comparada aos combustíveis fósseis, a mistura E93eG7 apresenta maior densidade energética e autonomia veicular em relação ao etanol hidratado, com redução de até 78% nas emissões de GEE quando se utiliza 93% de etanol de cana 1G e 7% de eGas proveniente de etanol 2G. O estudo destaca o papel dos biocombustíveis avançados e sintéticos na transição do Brasil para uma mobilidade de baixo carbono.
Trabalho completo:
This study evaluates the potential of a fuel blend composed of 7% synthetic gasoline (eGas) and 93% anhydrous ethanol (E100) by volume?called E93eG7?for decarbonizing Brazil?s passenger vehicle sector. Three eGas production scenarios using the Ethanol-to-Gasoline (ETG) process were assessed based on ethanol feedstocks: 1G corn ethanol, 1G sugarcane ethanol, and 2G sugarcane bagasse ethanol. Carbon intensity (CI) was calculated considering Brazilian energy inputs, including the national electricity mix and biomethane from sugarcane residues. The analysis covered ethanol synthesis, electricity use, thermal energy from biomethane, and hydrogen production via electrolysis. Results show that eGas from 2G ethanol yields the lowest CI (6.65 gCO?eq/MJ), followed by 1G sugarcane (22.97) and 1G corn (25.05). Compared to fossil fuels, E93eG7 shows improved energy density and vehicle range over hydrous ethanol, with up to 78% lower GHG emissions when using 93% 1G sugarcane ethanol and 7% eGas from 2G feedstock. This highlights the role of advanced biofuels and synthetic fuels in Brazil?s low-carbon mobility transition.
Palavras-chave: -,
Palavras-chave: -,
DOI: 10.5151/simea2025-PAP60
Referências bibliográficas
- [1] João Roberto, F. S., Ribeiro, J. B, Durães, L. “e-Fuel production process technologies and trends: A bibliometric-based review”, Energy Reports, Volume 13, Pages 3351 – 3368, 2025.
- [2] Garba, M. D., Usman, M., Khan, S., Shehzad, F., Galadima, A., Ehsan, M. F., Ghanem, A. S., Humayun, M. “CO2 towards fuels: A review of catalytic conversion of carbon dioxide to hydrocarbons”, Journal of Environmental Chemical Engineering, Volume 9, Issue 2, 104756, 2021.
- [3] D’Adamo, I, Gastaldi, M., Giannini, M., Nizami, A-S. “Environmental implications and levelized cost analysis of E-fuel production under photovoltaic energy, direct air capture, and hydrogen”, Environmental Research, Volume 246, 118163, 2024.
- [4] Ozkan, M., Narappa, A. B., Namboodiri, T., Shang, R., Ozkan, C. S., Watkins, J. M., Gao, Y., Tasnee, S., Lam, J., Talluri, K. R., Shang, R., Ozkan, C. S., Watkins, J. M. “Forging a sustainable sky: Unveiling the pillars of aviation e-fuel production for carbon emission circularity”, iScience, Volume 27, Issue 3, 109154, March 15, 202
- [5] Inada, Y. “What is e-fuel? – The potential of low-carbon fuel made from CO2 and H2”, Mitsui & Co. Global Strategic Studies Institute Monthly Report, March 202
- [6] Roberto, J. F. S., Ribeiro, J. B., Durães, L. “e-Fuel production process technologies and trends: A bibliometric-based review”, Energy Reports, Volume 13, Pages 3351 – 3368, 2025.
- [7] Zhang, S., & Zhang, N. “Review on integrated green hydrogen polygeneration system——Electrolysers, modelling, 4 E analysis and optimization”, Journal of Cleaner Production, 414, Article 137631, 2023.
- [8] Christopher, K., Dimitrios, R. “A review on exergy comparison of hydrogen production methods from renewable energy sources”, Energy Environ. Sci., Volume 5, Issue 5, Pages 6640 – 6651, 2012.
- [9] Gao, X., Chen, Y., Wang, Y., Zhao, L., Zhao, X., Du, J., Wu, H., Chen, A. “Next-Generation Green Hydrogen: Progress and Perspective from Electricity, Catalyst to Electrolyte in Electrocatalytic Water Splitting”, Nanomicro Lett., Volume 16, Issue 1, 2024.
- [10] AEA – Brazilian Society of Automotive Engineering - SIMEA 2025 7
- [11] Ren, M., Zhang, Y., Wang, X., Qiu, H. “Catalytic Hydrogenation of CO2 to Methanol: A Review”, Catalysts, Volume 12, Issue 4, 2022.
- [12] Azhari, N. J., Erika, D., Mardiana, St., Ilmi, T., Gunawan, M. L., Makertihartha, I. G. B. N., Kadja, G. T. M. “Methanol synthesis from CO2: A mechanistic overview”, Results in Engineering, Volume 16, 100711, 2022.
- [13] Keil, F. J. “Methanol-to-hydrocarbons: process technology”, Microporous and Mesoporous Materials, Volume 29, Issues 1 – 2, 1999.
- [14] Haw, J. F., Song, W., Marcus, D. M., Nicholas, J. B. “The Mechanism of Methanol to Hydrocarbon Catalysis”, Accounts of Chemical Research, Volume 36, Issue 5, Pages 317 – 326, 2003.
- [15] Liu, Z., Huang, J. “Fundamentals of the catalytic conversion of methanol to hydrocarbons”, Chemical Synthesis, Volume 2, 2022.
- [16] Chen, W., Lin, T., Dai, Y., An, Y., Yu, F., Zhong, L., Li, S., Sun, Y. “Recent advances in the investigation of nanoeffects of Fischer-Tropsch catalysts”, Catalysis Today, Volume 311, Pages 8 – 22, 2018.
- [17] Tomasek, S., Lonyi, F., Valyon, J., Wollmann, A., Hancsók, J. “Hydrocracking of Fischer–Tropsch Paraffin Mixtures over Strong Acid Bifunctional Catalysts to Engine Fuels”, ACS Omega, Volume 5, Issue 41, Pages 26413 – 26420, 2020.
- [18] Ayala-Cortés, A., Di Stasi, C., Torres, D., Pinilla, J. L., Suelves, I. “Upgrading Fischer-Tropsch waxes to produce transport fuels by catalytic hydrocracking/isomerization: A review”, Renewable and Sustainable Energy Reviews, Volume 215, 115633, 2025.
- [19] Masih, D., Rohani, S., Kondo, J. N., Tatsumi, T. “Catalytic dehydration of ethanol-to-ethylene over Rho zeolite under mild reaction conditions”, Microporous and Mesoporous Materials, Volume 282, Pages 91 – 99, 20
- [20] ABNT. “NBR 7024: Ligh road vehicles – Fuel consumption determination – Test method”, Associação Brasileira de Normas Técnicas, 05/2017.[21] Andersson, Ö., Börjesson, P. “The greenhouse gas emissions of an electrified vehicle combined with renewable fuels: Life cycle assessment and policy implications”, Applied Energy, Volume 289, 116621, 2021.
- [21] Kawamoto, R., Mochizuki, H., Moriguchi, Y., Nakano, T., Motohashi, M., Sakai, Y., Inaba, A. “Estimation of CO2 Emissions of Internal Combustion Engine Vehicle and Battery Electric Vehicle Using LCA”, Sustainability, Volume 11, Issue 9, 2019.
- [22] Ke, W., Zhang, S., He, X., Wu, Y., Hao, J. “Well-to-wheels energy consumption and emissions of electric vehicles: Mid-term implications from real-world features and air pollution control progress”, Applied Energy, Volume 188, Pages 367 – 377, 2017.
- [23] IPCC. “International Panel on Climate Change”, Fifth Assessment Report, 2013. Disponivel em: https://www.ipcc.ch/assessment-report/ar5/[25] ECOINVENT 3.5. Database, versão 3.5. Dados recebidos de LNBR e ÚNICA, 2018.
- [24] IPCC. “International Panel on Climate Change”, Sixth Assessment Report, 2021. Disponível em: https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_SPM_final.pdf.
- [25] EPE. “Descarbonização do Setor de Transporte Rodoviário – Intensidade de carbono das fontes de energia”, Empresa de Pesquisa Energética – Nota Técnica, Ministério de Minas e Energia, Setembro de 2022.
- [26] MME. “Política Nacional de Biocombustíveis – Lei n° 13.576/17”, RenovaBio, Proposta de Metas Compulsórias Anuais de Redução de Emissões na Comercialização de Combustíveis, Ministério de Minas e Energia, Anexo da Nota Técnica n° 12/2018/DBIO/SPG. Disponível em: https://antigo.mme.gov.br/c/document_library/get_file?groupId=36224&uuid=40d35ad0-582d-82e3-1de0-61979c5905ae
- [27] Anekwe, I. M. S., Lora, E. E. S., Subramanian, K. A., Kozlov, A., Zhang, S., Oboirien, B., Isa, Y. M. “Techno-economic and life-cycle analysis of single-step catalytic conversion of bioethanol to fuel blendstocks over Ni-doped HZSM-5 zeolite catalyst”, Energy Conversion and Management, Volume 22, 100529, 2024.
- [28] RSB. “The viability of South African sugarcane ethanol as feedstock for sustainable aviation fuel production – Part III: GHG emissions”., Roundtable on Sustainable Biomaterials, Geneva: RSB; 2020 [cited 2025 May 9]. Available from: https://rsb.org/wp-content/uploads/2020/10/Sugarcane-report_Part-III-GHG-emissions_compressed.pdf
- [29] Martins, M.; Lanzanova, T.; Guilherme, R.; Rovai F.F.; Barros, F.; Uehara, S.. Dry ethanol as commercial fuel in Brazil: opportunities and risks. In: Proceedings of the Simpósio Internacional de Engenharia Automotiva – SIMEA 2024; 2024; São Paulo, Brasil. São Paulo: AEA – Brazilian Society of Automotive Engineering; 2024.
Como citar:
MARTINS, Mario Eduardo Santos; LANZANOVA, THOMPSON DIÓRDINIS METZKA; FAGUNDEZ, Jean Lucca Souza; GUILHERME, Roger Tadeu Gondim; ROVAI, Fernando Fusco; GOMES, Luísa Clemente Magalhães; HAUSEN, Roberto Begnis; "Rumo à Mobilidade de Baixo Carbono: O Impacto de Misturas de Combustíveis Renováveis em Veículos de Passageiros", p. 297-303 . In: Anais do XXXII Simpósio Internacional de Engenharia.
São Paulo: Blucher,
2025.
ISSN 2357-7592,
DOI 10.5151/simea2025-PAP60
últimos 30 dias | último ano | desde a publicação
downloads
visualizações
indexações