Maio 2018 vol. 4 num. 3 - Colóquio Internacional de Design 2017

Artigo Completo - Open Access.

Idioma principal

Órtese e Elementos Finitos: Um Estudo Para o Desenvolvimento de Novos Designs Através de Manufatura Aditiva

Lana, Mariana Ribeiro Volpini; Horta, Anderson; Borges, Marco; Reis, Paulo;

Artigo Completo:

O padrão de caminhada em indivíduos que apresentam disfunções musculares fomenta a demanda por dispositivos auxiliares de locomoção. Estes artefatos de assistência ao movimento variam de acordo com sua forma, tamanho e características funcionais, obedecendo às aplicações clínicas desejadas. Dentre as órteses de membro inferior, o Tutor Curto visa melhorar a capacidade do andar em indivíduos com limitações neuromusculares diversas, oferecendo níveis variados de suporte durante a marcha. O objetivo deste estudo é explorar a possibilidade de utilização de novos designs em Manufatura Aditiva para reproduzir a forma e as características funcionais de um Tutor Curto de forma eficaz. Para tanto, este trabalho apresenta um estudo sobre a atuação das forças mecânicas através da análise de Elementos Finitos em um tutor curto. Será apresentado o estudo de distribuição estresse decorrente do desenvolvimento da marcha, bem como o deslocamento do dispositivo ortopédico no decorrer da caminhada do paciente.

Artigo Completo:

Orthosis and Finite Elements: a study for development of new designs through additive manufacturing Abstract: The gait pattern in people that present motor limitations foment the demand for auxiliary locomotion devices. These artifacts for movement assistance vary according to its shape, size and functional features, following the clinical applications desired. Among the ortheses of lower limbs, the ankle-foot orthesis aims to improve the ability to walk in people with different neuromuscular limitations, although they do not always answer patients' expectations for their aesthetic and functional characteristics. The purpose of this study is to explore the possibility of using new design in additive manufacturer to reproduce the shape and functional features of a ankle-foot orthesis in na efficient and modern way. Therefore, this work presents a study about the performance of the mechanical forces through the analysis of finite elements in an ankle-foot orthesis. It will be demonstrated a study of distribution of the stress on the orthopedic device in orthostatism and during the movement in the course of patient's walk.

Palavras-chave: manufatura aditiva; novos designs; órteses; elementos finitos,

Palavras-chave: additive manufacture; new designs; orthoses; finite elements,

DOI: 10.5151/cid2017-58

Referências bibliográficas
  • [1] B. Rogers, G. W. Bosker, M. F. Faustini, G. Walden, R. R. Neptune, R. H. Crawford. Variably Compliant Transtibial Prosthetic Socket Fabricated Using Solid Freeform 'a case study'. Journal of Prosthetics and Orthotics. V. 20. 2008.
  • [2] I. Raja.; V. J. Fernandes. Reverse engineering: an industrial perspective. London: Springer Verlag, V.1 , pp. 156–179, 2008
  • [3] IBGE. Censo Demográfico 2014 – Características Gerais da População. Resultados da Amostra. IBGE,2014. available inhttp://www.ibge.gov.br/home/estatistica/populacao/cnso2014/default_populacao.shtm. Públic acess in Jul. 2017.
  • [4] J. Banks. Adding value in additive manufacturing: Researchers in the United Kingdom and Europe look to 3D printing for customization. IEEE Pulse. Pages 22–26. 2013
  • [5] J. H. Pallari, K. W. Dalgarno, J. Woodburn: Mass customization of foot orthoses for rheumatoid arthritis using selective laser sintering. IEEE Trans Biomed Eng. 2010
  • [6] J. L. Gross. S. Y. Erkal. Lockwood. Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Anal Chem. Pages 3240–3253. 2014
  • [7] L. Agarwal, L. Broutman, “Three-dimensional finite element analysis of spherical particlecomposites,” Fibre Science and Technology, vol. 7, no. 1, pp. 63–77, 1974
  • [8] L. Deberg, A. Taheri, M. Andani, M. Hosseinipour, M. Elahinia. An SMA passive ankle foot orthosis: Design, modeling, and experimental evaluation. Smart Materials Research. 2014.
  • [9] L. Deberg, A. Taheri, M. Andani, M. Hosseinipour, M. Elahinia passive ankle foot orthosis: Design, modeling, and experimental evaluation. Smart Materials Research. 2014.
  • [10] L. K; Gibson, S. P. Cheung. The use of rapid prototyping to assist medical applications. Rapid Prototyping Journal. Pages 53-58. 2006
  • [11] L. Segerlind, Applied finite element analysis. Wiley, 1976.
  • [12] M. B. Hoy. 3D printing: making things at the library. Med Ref Serv Q. Pages 94–99. 2013
  • [13] M. C. Faustini, R. R. Neptune, R. H. Crawford, S. J. Stanhope. Manufacture of passive dynamic anklefoot orthoses using selective laser sintering. IEEE Trans Biomed Eng. 2008
  • [14] M. Jakubinek, D. Whitman, and M. White, “Negative thermal expansion materials,” Journal of Thermal Analysis and Calorimetry, vol. 99, no. 1, pp. 165–172, 2010.
  • [15] M. Kelly, M. C. SpiRES, J. A. Restrepo, Orthotic and prosthetic prescriptions for today andtomorrow. Physical medicine and rehabilitation clinics of North America. V. 18. 2007
  • [16] N. G. Harper, E. M. Russell, J. M. Wilken, R. R. Neptune. Selective laser sintered versus carbon fiber passive-dynamic ankle-foot orthoses: a comparison of patient walking performance. Journal of biomechanical engineering; 2014
  • [17] N. Herbert, D. Simpson, W. D. Spence, W. ION. A preliminary investigation into the development of 3-D printing of prosthetic sockets. Journal of Rehabilitation Research & Development. V. 42 2005.
  • [18] N. Volpato; C. H. Ahrens,; C. V. Ferreira,; G. Petrush; J. Carvalho, J. R. L. Santos, J. V. L. Silva. Prototipagem rápida: tecnologias e aplicações. São Paulo: Edgard Blucher, Pages 154-210. 2007.
  • [19] P. A. Webb: A review of rapid prototyping (RP) techniques in the medical and biomedicalsector. Journal of Medical Engineering & Technology. V. 24. 2000.
  • [20] P. F. JACOBS, Rapid prototyping & manufacturing: fundamentals of stereolithography, Society of Manufacturing Engineers, Michigan, USA, 1992;
  • [21] Pawale , V. N. Chougule, W. N. Tamboli, A. V. Mulay. Review: Analysis and Manufacturing of Ankle Foot Orthosis for Foot Drop. IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE). Pages. 12-15. 2012.
  • [22] Rengier, A. Mehndiratta, L. Giesel. 3D printing based on imaging data: a review of medical applications. Int J Comput Assist Radiol Surg. 2010
  • [23] S. Milusheva, E. Tosheva, D. Tochev, Y. Toshev. Personalized ankle foot orthosis with exchangeable elastic elements. Journal of Biomechanics; V.40, 2007
  • [24] S. Salles, D. E. Gyi: An evaluation of personalised insoles developed using additive manufacturing. J Sports Sci. 2013
  • [25] S. Salles, D. E. Gyi: The specification of personalised insoles using additive manufacturing. Work. 2012
  • [26] S. Schrank, L. Hitch, K. Wallace, R. Moore, S. J. Stanhope: Assessment of a virtual functional prototyping process for the rapid manufacture of passive-dynamic ankle-foot orthoses. J Biomech Eng. 2013
  • [27] S. Schrank, S. J. Stanhope. Dimensional accuracy of ankle-foot orthoses constructed by rapid customization and manufacturing framework. J. Rehabil. Res. Dev; 2011
  • [28] C. Sánchez. Estudo de impacto utilizando elementos finitos e análise não linear. Masters Thesis. Universidade de São Paulo. Escola de Engenharia de São Carlos. mechanical engineering Department. 2001
  • [29] T. Manee, Optimal dorsal strap placement and angulation to prevent pistoning in an ankle foot orthoses. Presented at the American Orthotic and Prosthetic Association National Assembly, Las Vegas,September 2011.
  • [30] T. WHOLERS, Rapid prototyping and manufacturing: State of the industry - Annual World Wide Progress Report; 2006.
  • [31] U. Gandhi, Data based models for automobile side impact analysis and design evaluation. Internationaljournal of impact engineering. V. 18, n 5, p.517 – 537.
  • [32] V. Kumar, R. Bajcsy, W. Harwin, P. Harker. Rapid design and prototyping of customizedrehabilitation aids. Communications of the ACM. V. 39, 1996.
  • [33] W. Chen, F. Tang, C. Ju. Stress distribution of the foot during mid-stance to push-off in barefoot gait: a 3-D finite element analysis Clinical Biomechanics. V. 16. Pages 614-620 Aug. 2001.
  • [34] X. Cui, T. Boland, D. D. D’Lima, M. K. Lotz. Thermal inkjet printing in tissue engineering and regenerative medicine. Recent Pat Drug Deliv Formul. Pages 149–155. 2012
  • [35] Y. Jin, J. Plott, R. Chen, J. Wensman, A. Shih Additive Manufacturing of Custom Orthoses and Prostheses – A Review. Procedia CIRP. V. 36, Pages 199-204, 2015
  • [36] 3d Sytems, MATERIAL SELECTION GUIDE FOR SELECTIVE LASER SINTERING – SLS available in https://br.3dsystems.com/sites/default/files/2017-05/3DSystems_SLS_Material%20Selection%20Guide_USEN_2016.12.20_WEB.pdf acess in Aug. 2017.
  • [37] Healt, C. S. (2017). AFO. available in http://www.medicalexpo.es/prod/conwell medical/product68102-506020.html acess in Aug. 2017.
  • [38] Direct, K.-R. (2017). SmartKnit AFO Liner for Adults. available in http://www.knitritedirect.com/afosocks. html acess in Aug. 2017.
Como citar:

Lana, Mariana Ribeiro Volpini; Horta, Anderson; Borges, Marco; Reis, Paulo; "Órtese e Elementos Finitos: Um Estudo Para o Desenvolvimento de Novos Designs Através de Manufatura Aditiva", p. 668-677 . In: . São Paulo: Blucher, 2018.
ISSN 2318-6968, ISBN: cid2017
DOI 10.5151/cid2017-58

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações