Setembro 2025 vol. 12 num. 1 - XXXII Simpósio Internacional de Engenharia

Trabalho completo - Open Access.

Idioma principal | Segundo idioma

Roadmap Tecnológico Inteligência Artificial e Conectividade em Sistemas Automotivos Contemporâneos

Technological Roadmap of Artificial Intelligence and Connectivity in Contemporary Automotive Systems

SCHERER, João Arthur Furlan ; ANDRADE, Marcos ; ORTOLAN, Murilo Artur ; ANDRADE, Camilla Verbiski de ; BIGLIARDI, Vincent ;

Trabalho completo:

Este artigo examina inovações em sistemas automotivos no que diz respeito à inteligência artificial e conectividade, considerando a junção de sensores com a análise em tempo real, a segurança provida por sistemas ADAS e as arquiteturas elétricas interligadas que suportam atualizações over?the?air. Ele também revisa a manutenção preditiva, a otimização de motores e os veículos definidos por serviços com funções modulares e focadas em software. Produzido em conjunto pela CT AEA de Tendências Tecnológicas e amplamente discutido em nossas reuniões da comissão, o trabalho delineia uma mobilidade de próxima geração, com foco no desempenho, segurança e sustentabilidade.

Trabalho completo:

This article examines key innovations in automotive systems regarding artificial intelligence and connectivity, leveraging sensor fusion and real-time analytics, ADAS-based safety, and networked electrical architectures supporting over?the?air updates. It also reviews predictive maintenance, engine optimization, and service-defined vehicles with modular, software-focused functions. Jointly produced by the AEA Group of Technology Tendencies and extensively discussed at our commission gatherings, the work outlines next-generation mobility focused on performance, safety, and sustainability.

Palavras-chave: -,

Palavras-chave: -,

DOI: 10.5151/simea2025-PAP19

Referências bibliográficas
  • [1] D. J. Yeong, G. Velasco-Hernandez, J. Barry, and J. Walsh, “Sensor and sensor fusion technology in autonomous vehicles: A review,” Sensors, vol. 21, p. 2140, 2021, doi: 10.3390/s21062140.
  • [2] S. Malik, M. A. Khan, H. El-Sayed, J. Khan, and O. Ullah, “How do autonomous vehicles decide?,” Sensors, vol. 23, p. 317, 2023, doi: 10.3390/s23010317.
  • [3] ]J. B. Cicchino, “Effectiveness of forward collision warning and autonomous emergency braking systems in reducing front-to-rear crash rates,” Accid Anal Prev, vol. 99, pt. A, pp. 142–152, 2017, doi: 10.1016/j.aap.2016.11.009.
  • [4] ]M. Ogunsina, C. Efunniyi, O. Osundare, S. Folorunsho, and L. Akwawa, “Advanced sensor fusion and localization techniques for autonomous systems: A review and new approaches,” Int J Front Res Sci Technol, vol. 2, pp. 51–60, 2024, doi: 10.56355/ijfret.2022.1.0022.
  • [5] ]V. Vyasa and Z. Xu, “Maintenance in automotive and aerospace applications – An overview,” Int J Adv Sci Transact, vol. 3, no. 2, pp. 349–361, 2024.
  • [6] ]Rambus, “What is OTA in automotive? Over the air updates explained,” Rambus Blog, 2024. [Online]. Available: https://www.rambus.com/blogs/ota-updates-explained/
  • [7] W. Zhang and J. Xu, “Advanced lightweight materials for automobiles: A review,” Mater Des, vol. 221, p. 110994, 2022.
  • [8] Q. Plantec, et al., “Big data as an exploration trigger or problem-solving patch: Design and integration of AI-embedded systems in the automotive industry,” Technovation, vol. 124, p. 102763, 2023.AEA – Brazilian Society of Automotive Engineering - SIMEA 20259
  • [9] H. Schmidt, K. Büttner, and G. Prokop, “Methods for virtual validation of automotive powertrain systems in terms of vehicle drivability—A systematic literature review,” IEEE Access, vol. 11, pp. 27043–27065, 2023.
  • [10] H. Karacali, N. Donum, and E. Cebel, “AI-enhanced automotive navigation: Enriching driving experiences through intelligent contextual information delivery,” Eur J Res Dev, vol. 4, no. 2, pp. 110–129, 2024
  • [11] ]M. A. Soliman and M. M. S. Kaldas, “Semi-active suspension systems from research to mass-market – A review,” J Low Freq Noise Vib Act Control, vol. 40, no. 2, pp. 1005–1023, 2021.
  • [12] L. Harris, “Telematics and big data: Revolutionizing fleet management in the automotive industry,” 2024.
  • [13] S. Li and P. Zhao, “Big data driven vehicle battery management method: A novel cyber-physical system perspective,” J Energy Storage, vol. 33, p. 102064, 2021.
  • [14] P. Götschl and K. Klumaier, “On-board monitoring (OBM) for EU7 – Challenges and possible approaches,” Int Motorenkongress, pp. 195–207, Wiesbaden: Springer Fachmedien Wiesbaden, 2024.
  • [15] V. Müller, et al., “On-board monitoring to meet upcoming EU-7 emission standards – Squaring the circle between effectiveness and robust realization,” Transp Eng, vol. 10, p. 100138, 2022.
  • [16] T. S. Madhuri and J. B. Vishnu, “Software-defined vehicles: The future of automobile industry,” in Proc. 17th Int. Conf. COMmunication Systems and NETworks (COMSNETS), IEEE, 2025.[17]A. Keskar, “Enhancing software-defined vehicles with service-oriented architecture: A framework for scalable and modular mobility solutions,” 2025.
Como citar:

SCHERER, João Arthur Furlan; ANDRADE, Marcos; ORTOLAN, Murilo Artur; ANDRADE, Camilla Verbiski de; BIGLIARDI, Vincent; "Roadmap Tecnológico Inteligência Artificial e Conectividade em Sistemas Automotivos Contemporâneos", p. 86-94 . In: Anais do XXXII Simpósio Internacional de Engenharia. São Paulo: Blucher, 2025.
ISSN 2357-7592, DOI 10.5151/simea2025-PAP19

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações