Article - Open Access.

Idioma principal | Segundo idioma

PRODUÇÃO DE Spirulina sp. (LEB18) COM ELEVADOS TEORES DE PROTEÍNA E FICOCIANINA, UTILIZANDO ÁGUA RESIDUAL DA AQUICULTURA

PRODUCTION OF Spirulina sp. (LEB18) WITH HIGH PROTEIN AND PHYCHOCYANINE CONTENT USING AQUACULTURE RESIDUAL WATER.

Silva, Isabella Borges dos Anjos da ; Cardoso, Lucas Guimarães ; Duarte, Jessica Hartwig ; Costa, Jorge Alberto Vieira ; Assis, Denilson de Jesus ; Druzian, Janice Izabel ; Chinalia, Fabio Alexandre ; Galván, Karina Lizzeth Pedraza ; , ;

Article:

O objetivo foi produzir biomassa de Spirulina sp. (LEB 18) utilizando água residual da aquicultura como meio alternativo e avaliar a composição da biomassa. Os cultivos foram realizados em fotobiorreatores (1L) com 100% de água residual de aquicultura suplementada com T-25, T-50, T-75. O tratamento T-25 apresentou maiores valores de proteína (65,73%) e ficocianina (16,60 mg/mL). Assim, o tratamento com 25% representa uma alternativa eficiente, barata e sustentável para o setor de aquicultura, produzindo biomassa de baixo custo com características diferenciadas e alto valor agregado.

Article:

The objective was to produce biomass of Spirulina sp. (LEB 18) using aquaculture wastewater as an alternative means and to evaluate the biomass composition. Cultures were performed in photobioreactors (1L) with 100% residual aquaculture water supplemented with T-25, T-50, T-75. Treatment T-25 presented higher values of protein (65.73%) and phycocyanin (16.60 mg/mL). Thus, the 25% treatment represents an efficient, cheap and sustainable alternative for the aquaculture sector, producing low cost biomass with different characteristics and high added value.

Palavras-chave: Spirulina; aquicultura; proteína,

Palavras-chave: Spirulina; aquaculture; protein,

DOI: 10.5151/siintec2019-122

Referências bibliográficas
  • [1] 1FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS. The State of World Fisheries and Aquaculture. Meeting The Sustainable Development Goals, Rome, 223 p., 2018.
  • [2] 2WORLD BANK REPORT. Fish to 2030: prospects for fisheries and aquaculture. The World Bank, Washington, DC, n. 83177, dez. 2013.
  • [3] 3WUANG, S. C. CHUA, P. Q. D. KHIN, M. C. LUO, Y. D. Use of Spirulina biomass produced from treatment of aquaculture wastewater as agricultural fertilizers. Algal Research, v. 15, p. 59–64, abr. 2016.
  • [4] 4MARKOU, G. CHATZIPAVLIDIS, I. GEORGAKAKIS, D. Cultivation of Arthrospira (Spirulina platensis) in olive-oil mill wastewater treated with sodium hypochlorite. Bioresource Technology, v. 112, p. 234–241, fev. 2012.
  • [5] 5ALVA, S. PABELLO, M. L. MANUEL, V. LEDESMA, O. et al.Carbon, nitrogen, and phosphorus removal, and lipid production by three saline microalgae grown in synthetic wastewater irradiated with different photon fluxes. Algal Research, v. 34, p. 97–103, set. 2018.
  • [6] 6AZIANABIHA, K. H. A. YAAKOB, Z. ABDULLAH, S. R. S. TAKRIFF, M. S. Analysis of the elemental composition and uptake mechanism of Chlorella sorokiniana for nutrient removal in agricultural wastewater under optimized response surface methodology (RSM) conditions. Journal of Cleaner Production, v. 210, n. 14, p. 673-686, fev. 2019.
  • [7] 7FREIRE, I. CORTINA-BURGUEÑO, A. GRILLE, P. ARIZCUN, M. A. et al. Nannochloropsis limnetica: A freshwater microalga for marine aquaculture. Aquaculture Research, v. 459, p. 124-130, jun. 2016.
  • [8] 8KUO, CM. CHEN, TY. LIN, TH. KAO, CY. et al. Cultivation of Chlorella sp., GD using piggery wastewater for biomass and lipid production. Bioresource Technology, v. 194, p. 326–333, out. 2015.
  • [9] 9SALAMA, E. BYONGHUN, J. SOONWOONG, C. SANGHUN, L. et al. Interactive effect of indole-3-acetic acid and diethyl aminoethyl hexanoate on the growth and fatty acid content of some microalgae for biodiesel production. Journal of Cleaner Production, v. 168, p. 1017–1024, dez. 2017.
  • [10] 10ZHANG, L. PEI, H. YANG, Z. WANG, X. et al. Microalgae nourished by mariculture wastewater aids aquaculture self-reliance with desirable biochemical composition. Bioresource Technology, v. 278, p. 205-213, abr. 2019.
  • [11] 11POKHREL, A. Soni, P. Performance analysis of different rice-based cropping systems in tropical region of Nepal. Journal of Environmental Management, v. 197, p. 70–79, jul. 2017.
  • [12] 12COSTA, J. A. V. COLLA, L. M. FILHO, P. D. KABKE, K. et al. Modelling of Spirulina platensis growth in fresh water using response surface methodology. World Journal of Microbiology and Biotechnology, v. 18, p. 603-607, 2004.
  • [13] 13DANESHVAR, E. ANTIKAINEN, L. KOUTRA, E. KORNAROS, M. et al. Investigation on the feasibility of Chlorella vulgaris cultivation in a mixture of pulp and aquaculture effluents: Treatment of wastewater and lipid extraction. Bioresource Technology, v. 255, p. 104–110, jan. 2018.
  • [14] 14LOWRY, O. H. ROSEBROUGH, N. J. FARR, A. L. RANDALL, R. J. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, v. 193, p. 265-275, nov. 1951.
  • [15] 15DUBOIS, M. GILLES, K. A. HAMILTON, J. K. REBERS, P. A. et al. Colorimetric method for determination of sugars and related substances. Analytical Chemistry, v. 28, n. 3, p. 350-356, mar. 1956.
  • [16] 16FOLCH, J. LEES, M. STANLEY, G. H. S. A simple method for the isolation and purification of total lipides from animal tissues. The Journal of Biological Chemistry, v. 226, p. 497-509, mar. 1957.
  • [17] 17PRATES, D. F. RADMANN, E. M. DUARTE, J. H. DE MORAIS, M. G. et al. Spirulina cultivated under different light emitting diodes: Enhanced cell growth and phycocyanin production. Bioresource Technology, v. 256, p. 38–43, mai. 2018.
  • [18] 18BENNETT, A. BOGORAD, L. Complementary chromatic adaptation in a filamentous blue-green alga. The Journal of Cell Biology, v. 58, p. 419-435, 1973.
  • [19] 19ANDRADE, B. B. CARDOSO, L. G. ASSIS, D. J. COSTA, J. A. V. et al. Production and characterization of Spirulina sp. LEB 18 cultured in reused Zarrouk’s medium in a raceway-type bioreactor. Bioresource Technology, v. 284, p. 340-348, jul. 20
  • [20] 20PEREZ-GARCIA, O. DE-BASHAN, L. E. ESCALANTE, F. BASHAN, Y. Heterotrophic cultures of microalgae: Metabolism and potential products. Water Research, v. 45, p. 11-36, ago. 2010.
  • [21] 21RAMSUNDAR, P. ABHISHEK, G. SINGH, P. PILLAY, K. et al. Evaluation of wate activated sludge as a potential nutrient source for cultivation of Chlorella sorokiniana. Algal Research, v. 28, p. 108-117, 2017.
  • [22] 22MARCHÃO, L. M. A. DA SILVA, T. L. GOUVEIA, I. H. REIS, A. Microalgae-mediated brewery wastewater treatment: effect of dilution rate on nutrient removal rates, biomass biochemical composition, and cell physiology. Journal of Applied Phycology, v. 30, p. 1583–1595, dez. 2017.
  • [23] 23Xu, XQ. WANG, JH. ZHANG, TY. DAO, GH. et al. Attached microalgae cultivation and nutrients removal in a novel capillary-driven photo-bio film reactor. Algal Research, v. 32, p. 198-205, nov. 2017.
  • [24] 24MAYERS, J. MALMHALL-BAH, E. ALCAIDE-SANCHO, J. Identifying a marine microalgae with high carbohydrate productivities under stress and potential for efficient flocculation. Algal Research, v. 31, p. 430-442, mai. 2018.
  • [25] 25ZENG, X. DANQUAH, M. K. ZHANG, S. ZHANG, X. et al. Autotrophic cultivation of Spirulina platensis for CO2 fixation and phycocyanin production. Chemical Engineering Journal, v. 183, p. 192–197, fev. 2012.
  • [26] 26MANIRAFASHA, E. MURWANASHYAKA, T. NDIKUBWIMANA, T. RASHID, A. N. et al. Enhancement of cell growth and phycocyanin production in Arthrospira
  • [27] (Spirulina) platensis by metabolic stress and nitrate fed-batch. Bioresource Technology, v. 255, p. 293-301, mai. 2018.
  • [28] 27CHOW, F. Nitrate assimilation: the role of in vitro nitrate reductase assay as nutritional predictor. In: Agricultural and Biological Sciences. São Paulo: Applied Photosynthesis, mar. 2012, v. 14, p. 105–120.
  • [29] 28VARDON, D. R. SHARMA, B. K. SCOTT, J. YU, G. et al. Chemical properties of biocrude oil from the hydrothermal liquefaction of Spirulina algae, swine manure, and digested anaerobic sludge. Bioresource Technology, v. 102, p. 8295-8303, set. 2011.
  • [30] 29HUANG, Y. CHEN, Y. XIE, J. LIU, H. et al. Bio-oil production from hydrothermal liquefaction of high-protein high-ash microalgae including wild Cyanobacteria sp. and cultivated Bacillariophyta sp. Fuel, v. 183, p. 9-19, nov. 2016.
  • [31] 30NAM, K. LEE, H. H. HEO, SW. CHANG, Y. K. et al. Cultivation of Chlorella vulgaris with swine wastewater and potential for algal biodiesel production. Journal of Applied Phycology, v. 29, p. 1171–1178, dez. 2016.
Como citar:

Silva, Isabella Borges dos Anjos da; Cardoso, Lucas Guimarães; Duarte, Jessica Hartwig; Costa, Jorge Alberto Vieira; Assis, Denilson de Jesus; Druzian, Janice Izabel; Chinalia, Fabio Alexandre; Galván, Karina Lizzeth Pedraza; , ; "PRODUÇÃO DE Spirulina sp. (LEB18) COM ELEVADOS TEORES DE PROTEÍNA E FICOCIANINA, UTILIZANDO ÁGUA RESIDUAL DA AQUICULTURA", p. 973-981 . In: Anais do V Simpósio Internacional de Inovação e Tecnologia. São Paulo: Blucher, 2019.
ISSN 2357-7592, DOI 10.5151/siintec2019-122

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações