Trabalho completo - Open Access.

Idioma principal | Segundo idioma

Produção de hidrogênio pela reforma do etanol: análise crítica e roteiro tecnológico

Hydrogen production by ethanol reform: critical analysis and technological roadmap

FREITAS, Bárbara Rodrigues ; LAGO, Letícia Avelar Bergeron ; FREGADOLLI, Ana Clara Lourenço ; LOPES, Gustavo Santos ; LOPES, Marcus Vinícius Oliveira ; DOUBEK, Gustavo ; OLIVEIRA JR. Fernando de, ;

Trabalho completo:

O hidrogênio (H2) como combustível tem vantagens como baixas emissões de GEE quando produzido com energia renovável, alta potência energética e muitas rotas de produção. Quando se trata do Brasil, existe um enorme potencial de produção de H2 verde devido à sua  estabelecida expertise e infraestrutura de produção e distribuição de etanol. A reforma do etanol é uma das formas mais promissoras de produção de H2 e pode ser realizada em diferentes processos. Nesse contexto, a principal motivação deste trabalho é realizar uma breve revisão da literatura sobre cada uma dessas tecnologias de reforma do etanol. O artigo também tem como objetivo entender as tecnologias de reforma, analisando o mercado H2 em cenários brasileiros, e prever um roteiro para a tecnologia. Como possíveis conclusões, de acordo com a revisão da literatura, os processos mais utilizados e estudados são a reforma a vapor do etanol, a oxidação parcial do etanol e a reforma autotérmica do etanol. Resumidamente, o objetivo deste estudo é contribuir para a gestão energética, apresentando uma promissora tecnologia de produção de hidrogénio e analisando as suas perspetivas de implementação.

Trabalho completo:

Hydrogen (H2) as a fuel has advantages such as near to zero GHG emissions when produced with renewable energy, high energy power, and many production routes. When it comes to Brazil, there is a huge production potential of green H2 due to its already established expertise and infrastructure of ethanol production and distribution. Ethanol reform is one of the most promising ways of producing H2 and can be performed in different processes. Within this context, the main motivation of this paper is to conduct a brief literature review on each of these ethanol-reforming technologies. The article also has the purpose to understand reforming technologies, analyzing the H2 market in Brazilian scenarios, and foresee a roadmap for the technology. As possible takeaways, according to the literature review, the most used and studied processes are ethanol steam reforming, partial oxidation of ethanol, and ethanol autothermal reforming. Briefly, the objective of this study is contributing to energy management, presenting a promissory hydrogen production technology and analyzing its implementation perspectives.

Palavras-chave: ,

Palavras-chave: ,

DOI: 10.5151/simea2023-PAP12

Referências bibliográficas
  • [1] " J.M. Mar, D.M.F. Santos, The Hydrogen Color
  • [2] Spectrum: Techno-Economic Analysis of the Available
  • [3] Technologies for Hydrogen Production, (2023) 25–46.
  • [4] [2] H. Ishaq, I. Dincer, C. Crawford, A review on
  • [5] hydrogen production and utilization: Challenges and
  • [6] opportunities, Int. J. Hydrogen Energy. 47 (2022) 26238–
  • [7] 26264. https://doi.org/10.1016/j.ijhydene.2021.11.149.
  • [8] [3] O.F. Noyan, M.M. Hasan, N. Pala, A Global Review
  • [9] of the Hydrogen Energy Eco-System, Energies. 16 (2023).
  • [10] https://doi.org/3390/en16031484.
  • [11] [4] McKinsey&Company, Green Hydrogen: an
  • [12] opportunity to create sustainable wealth in Brazil and the
  • [13] world, (2021) 14. https://www.mckinsey.com/br/en/ourinsights/hidrogenio-verde-uma-oportunidade-de-geracao-deriqueza-com-sustentabilidade-para-o-brasil-e-o-mundo.
  • [14] [5] The Future of Hydrogen, Futur. Hydrog. (2019).
  • [15] https://doi.org/10.1787/1e0514c4-en.
  • [16] [6] IEA, Global Hydrogen Review 2022, Glob. Hydrog.
  • [17] Rev. 2022. (2022). https://doi.org/10.1787/39351842-en.
  • [18] [7] L.G. Anderson, Ethanol fuel use in Brazil: air quality
  • [19] impacts, Energy Environ. Sci. 2 (2009) 1015.
  • [20] https://doi.org/10.1039/b906057j.
  • [21] [8] M.L. Lopes, S.C. de L. Paulillo, A. Godoy, R.A.
  • [22] Cherubin, M.S. Lorenzi, F.H.C. Giometti, C.D. Bernardino,
  • [23] H.B. de Amorim Neto, H.V. de Amorim, Ethanol production
  • [24] in Brazil: a bridge between science and industry, Brazilian J.
  • [25] Microbiol. 47 (2016) 64–76.
  • [26] https://doi.org/10.1016/j.bjm.2016.10.003.
  • [27] [9] D.L. Mesquita, O Processo De Construção Da
  • [28] Tecnologia Flex Fuel No Brasil: Uma Análise Sob a Ótica Da
  • [29] “ Plataforma De Negócio ” ( Business Platform ), (2009).
  • [30] [10] W.H. Chen, P.P. Biswas, H.C. Ong, A.T. Hoang, T.B.
  • [31] Nguyen, C. Di Dong, A critical and systematic review of
  • [32] sustainable hydrogen production from ethanol/bioethanol:
  • [33] Steam reforming, partial oxidation, and autothermal reforming,
  • [34] Fuel. 333 (2023). https://doi.org/10.1016/j.fuel.2022.126526.
  • [35] [11] IEA, IEA (International Energy Agency) Report
  • [36] 2021., Glob. Hydrog. Rev. 2021. (2021).
  • [37] [12] R.C. de Oliveira, TD 2787 - Panorama do hidrogênio
  • [38] no Brasil, Texto Para Discussão. (2022) 1–59.
  • [39] https://doi.org/10.38116/td2787.
  • [40] [13] J. Dias, Estado divulga estratégias para a produção de
  • [41] hidrogênio verde, Gov. Do Estado Do Rio Gd. Do Sul. (n.d.).
  • [42] https://estado.rs.gov.br/estado-divulga-estrategias-para-aproducao-de-hidrogenio-verde.
  • [43] [14] Governo do Estado lança Plano Estadual para
  • [44] Economia de Hidrogênio Verd, Gov. Do Estado Da Bahia.
  • [45] (n.d.).
  • [46] http://www.meioambiente.ba.gov.br/2022/04/12357/Governo-do-Estado-lanca-Plano-Estadual-para-Economia-deHidrogenio-Verde.html.
  • [47] [15] Paraná avança em projetos de hidrogênio verde e vira
  • [48] protagonista nacional na área, Gov. Do Estado Do Paraná.
  • [49] (n.d.). https://www.aen.pr.gov.br/Noticia/Parana-avanca-emprojetos-de-hidrogenio-verde-e-vira-protagonista-nacionalna-area.
  • [50] [16] M. Curcio, São Paulo terá rota de hidrogênio com
  • [51] ajuda da Great Wall, (n.d.).
  • [52] https://automotivebusiness.com.br/pt/posts/mobility-now/saopaulo-tera-rota-de-hidrogenio-com-ajuda-da-great-wall/.
  • [53] [17] J.P. Guerra, F.H. Cardoso, A. Nogueira, L. Kulay,
  • [54] Thermodynamic and environmental analysis of scaling up
  • [55] cogeneration units driven by sugarcane biomass to enhance
  • [56] power exports, Energies. 11 (2018).
  • [57] https://doi.org/10.3390/en11010073.
  • [58] [18] T.S. Colombaroli, Ecological and Exergetic Analysis
  • [59] of Hydrogen Production in a Sugar-Ethanol Ecological and
  • [60] Exergetic of Hydrogen Production in a Sugar-Ethanol Plant,
  • [61] (2011).
  • [62] [19] M.I. Taipabu, K. Viswanathan, W. Wu, N. Hattu,
  • [63] A.E. Atabani, A critical review of the hydrogen production
  • [64] from biomass-based feedstocks: Challenge, solution, and
  • [65] future prospect, Process Saf. Environ. Prot. 164 (2022) 384–
  • [66] 407. https://doi.org/10.1016/j.psep.2022.06.006.
  • [67] [20] S. Sun, W. Yan, P. Sun, J. Chen, Thermodynamic
  • [68] analysis of ethanol reforming for hydrogen production,
  • [69] Energy. 44 (2012) 911–924.
  • [70] https://doi.org/10.1016/j.energy.2012.04.059.
  • [71] [21] C. Thanomjit, Y. Patcharavorachot, P. Ponpesh, A.
  • [72] Arpornwichanop, Thermodynamic analysis of solid oxide fuel
  • [73] cell system using different ethanol reforming processes, Int. J.
  • [74] Hydrogen Energy. 40 (2015) 6950–6958.
  • [75] https://doi.org/10.1016/j.ijhydene.2015.03.155.
  • [76] [22] L. V. Mattos, G. Jacobs, B.H. Davis, F.B. Noronha,
  • [77] Production of hydrogen from ethanol: Review of reaction
  • [78] mechanism and catalyst deactivation, Chem. Rev. 112 (2012)
  • [79] 4094–4123. https://doi.org/10.1021/cr2000114.
  • [80] [23] T. Hou, S. Zhang, Y. Chen, D. Wang, W. Cai,
  • [81] Hydrogen production from ethanol reforming: Catalysts and
  • [82] reaction mechanism, Renew. Sustain. Energy Rev. 44 (2015)
  • [83] 132–148. https://doi.org/10.1016/j.rser.2014.12.023.
  • [84] [24] A. Kumar, Ethanol Decomposition and
  • [85] Dehydrogenation for Hydrogen Production: A Review of
  • [86] Heterogeneous Catalysts, Ind. Eng. Chem. Res. 60 (2021)
  • [87] 16561–16576. https://doi.org/10.1021/acs.iecr.1c02557.
  • [88] [25] S. Anil, S. Indraja, R. Singh, S. Appari, B. Roy, A
  • [89] review on ethanol steam reforming for hydrogen production
  • [90] over Ni/Al2O3 and Ni/CeO2 based catalyst powders, Int. J.
  • [91] Hydrogen Energy. 47 (2022) 8177–8213.
  • [92] https://doi.org/10.1016/j.ijhydene.2021.12.183.
  • [93] [26] E.D. Sall, D.A. Morgenstern, J.P. Fornango, J.W.
  • [94] Taylor, N. Chomic, J. Wheeler, Reforming of ethanol with
  • [95] exhaust heat at automotive scale, Energy and Fuels. 27 (2013)
  • [96] 5579–5588. https://doi.org/10.1021/ef4011274.
  • [97] [27] M. Ni, D.Y.C. Leung, M.K.H. Leung, A review on
  • [98] reforming bio-ethanol for hydrogen production, Int. J.
  • [99] Hydrogen Energy. 32 (2007) 3238–3247.
  • [100] https://doi.org/10.1016/j.ijhydene.2007.04.038.
  • [101] [28] D.K. Liguras, D.I. Kondarides, X.E. Verykios,
  • [102] Production of hydrogen for fuel cells by steam reforming of
  • [103] ethanol over supported noble metal catalysts, Appl. Catal. B
  • [104] Environ. 43 (2003) 345–354. https://doi.org/10.1016/S0926-
  • [105] 3373(02)00327-2.
  • [106] [29] C. Diagne, H. Idriss, K. Pearson, M.A. GómezGarcía, A. Kiennemann, Efficient hydrogen production by
  • [107] ethanol reforming over Rh catalysts. Effect of addition of Zr
  • [108] on CeO2 for the oxidation of CO to CO2, Comptes Rendus
  • [109] Chim. 7 (2004) 617–622.
  • [110] https://doi.org/10.1016/j.crci.2004.03.004.
  • [111] [30] H. Wang, J.L. Ye, Y. Liu, Y.D. Li, Y.N. Qin, Steam
  • [112] reforming of ethanol over Co3O4/CeO2 catalysts prepared by
  • [113] different methods, Catal. Today. 129 (2007) 305–312.
  • [114] https://doi.org/10.1016/j.cattod.2006.10.012.
  • [115] [31] M.A. Ebiad, D.R. Abd El-Hafiz, R.A. Elsalamony,
  • [116] L.S. Mohamed, Ni supported high surface area CeO2–ZrO2
  • [117] catalysts for hydrogen production from ethanol steam
  • [118] reforming, RSC Adv. 2 (2012) 8145.
  • [119] https://doi.org/10.1039/c2ra20258a.
  • [120] [32] M.D. Zhurka, A.A. Lemonidou, P.N.
  • [121] Kechagiopoulos, Elucidation of metal and support effects
  • [122] during ethanol steam reforming over Ni and Rh based catalysts
  • [123] supported on (CeO2)-ZrO2-La2O3, Catal. Today. 368 (2021)
  • [124] 161–172. https://doi.org/10.1016/j.cattod.2020.03.020.
  • [125] [33] F. Liu, L. Zhao, H. Wang, X. Bai, Y. Liu, Study on
  • [126] the preparation of Ni-La-Ce oxide catalyst for steam reforming
  • [127] of ethanol, Int. J. Hydrogen Energy. 39 (2014) 10454–10466.
  • [128] https://doi.org/10.1016/j.ijhydene.2014.05.036.
  • [129] [34] J. Llorca, N. Homs, J. Sales, J.L.G. Fierro, P.R. De La
  • [130] Piscina, Effect of sodium addition on the performance of CoZnO-based catalysts for hydrogen production from bioethanol,
  • [131] J. Catal. 222 (2004) 470–480.
  • [132] https://doi.org/10.1016/j.jcat.2003.12.008.
  • [133] [35] J.H. Sinfelt, W.F. Taylor, D.J.C. Yates, Comparison
  • [134] of Metals of Known Surface Area for Ethane Hydrogenolysis,
  • [135] 69 (1966) 95–101.
  • [136] [36] D.J.C. Yates, over the Noble VIII D. J. C. YATES, 90
  • [137] (1967) 82–90.
  • [138] [37] J. Llorca, N. Homs, J. Sales, J.L.G. Fierro, P.R. De La
  • [139] Piscina, A. Machocki, A. Denis, W. Grzegorczyk, W. Gac,
  • [140] W.H. Chen, P.P. Biswas, H.C. Ong, A.T. Hoang, T.B. Nguyen,
  • [141] C. Di Dong, C. Diagne, H. Idriss, K. Pearson, M.A. GómezGarcía, A. Kiennemann, Nano- and micro-powder of zirconia
  • [142] and ceria-supported cobalt catalysts for the steam reforming of
  • [143] bio-ethanol, Comptes Rendus Chim. 222 (2004) 470–480.
  • [144] https://doi.org/10.1016/j.crci.2004.03.004.
  • [145] [38] D.L. Trimm, Coke formation and minimisation
  • [146] during steam reforming reactions, Catal. Today. 37 (1997)
  • [147] 233–238. https://doi.org/10.1016/S0920-5861(97)00014-X.
  • [148] [39] M. Dömök, M. Tóth, J. Raskó, A. Erdohelyi,
  • [149] Adsorption and reactions of ethanol and ethanol-water mixture on alumina-supported Pt catalysts, Appl. Catal. B Environ. 69
  • [150] (2007) 262–272. https://doi.org/10.1016/j.apcatb.2006.06.001.
  • [151] [40] A.L. Alberton, M.M.V.M. Souza, M. Schmal, Carbon
  • [152] formation and its influence on ethanol steam reforming over
  • [153] Ni/Al2O3 catalysts, Catal. Today. 123 (2007) 257–264.
  • [154] https://doi.org/10.1016/j.cattod.2007.01.062.
  • [155] [41] V. Klouz, V. Fierro, P. Denton, H. Katz, J.P. Lisse, S.
  • [156] Bouvot-Mauduit, C. Mirodatos, Ethanol reforming for
  • [157] hydrogen production in a hybrid electric vehicle: Process
  • [158] optimisation, J. Power Sources. 105 (2002) 26–34.
  • [159] https://doi.org/10.1016/S0378-7753(01)00922-3.
  • [160] [42] D.K. Liguras, K. Goundani, X.E. Verykios,
  • [161] Production of hydrogen for fuel cells by catalytic partial
  • [162] oxidation of ethanol over structured Ni catalysts, J. Power
  • [163] Sources. 130 (2004) 30–37.
  • [164] https://doi.org/10.1016/j.jpowsour.2003.12.008.
  • [165] [43] C.P. Rodrigues, V.T. da Silva, M. Schmal, Partial
  • [166] oxidation of ethanol on Cu/Alumina/cordierite monolith,
  • [167] Catal. Commun. 10 (2009) 1697–1701.
  • [168] https://doi.org/10.1016/j.catcom.2009.05.010.
  • [169] [44] H. Ehrich, E. Kraleva, AlZn based Co and Ni catalysts
  • [170] for the partial oxidation of bioethanol - Influence of different
  • [171] synthesis procedures, Cent. Eur. J. Chem. 12 (2014) 1285–
  • [172] 1293. https://doi.org/10.2478/s11532-014-0573-8.
  • [173] [45] W.C. Chiu, R.F. Horng, H.M. Chou, Hydrogen
  • [174] production from an ethanol reformer with energy saving
  • [175] approaches over various catalysts, Int. J. Hydrogen Energy. 38
  • [176] (2013) 2760–2769.
  • [177] https://doi.org/10.1016/j.ijhydene.2012.12.068.
  • [178] [46] M.E. Silva Júnior, M.O. Palm, D.A. Duarte, R.C.
  • [179] Catapan, Catalytic Pt/Al2O3 Monolithic Foam for Ethanol
  • [180] Reforming Fabricated by the Competitive Impregnation
  • [181] Method, ACS Omega. (2022).
  • [182] https://doi.org/10.1021/acsomega.2c06870.
  • [183] [47] Q. Hao, D.X. Liu, R. Deng, H.X. Zhong, Boosting
  • [184] Electrochemical Carbon Dioxide Reduction on Atomically
  • [185] Dispersed Nickel Catalyst, Front. Chem. 9 (2022) 1–8.
  • [186] https://doi.org/10.3389/fchem.2021.837580.
  • [187] [48] C.C. Hung, S.L. Chen, Y.K. Liao, C.H. Chen, J.H.
  • [188] Wang, Oxidative steam reforming of ethanol for hydrogen
  • [189] production on M/Al 2O 3, Int. J. Hydrogen Energy. 37 (2012)
  • [190] 4955–4966. https://doi.org/10.1016/j.ijhydene.2011.12.060.
  • [191] [49] A. Casanovas, J. Llorca, N. Homs, J.L.G. Fierro, P.
  • [192] Ramírez de la Piscina, Ethanol reforming processes over ZnOsupported palladium catalysts: Effect of alloy formation, J.
  • [193] Mol. Catal. A Chem. 250 (2006) 44–49.
  • [194] https://doi.org/10.1016/j.molcata.2006.01.033.
  • [195] [50] V. Fierro, O. Akdim, H. Provendier, C. Mirodatos,
  • [196] Ethanol oxidative steam reforming over Ni-based catalysts, J.
  • [197] Power Sources. 145 (2005) 659–666.
  • [198] https://doi.org/10.1016/j.jpowsour.2005.02.041.
  • [199] [51] A. Nieto-Márquez, D. Sánchez, A. Miranda-Dahdal,
  • [200] F. Dorado, A. de Lucas-Consuegra, J.L. Valverde,
  • [201] Autothermal reforming and water-gas shift double bed reactor
  • [202] for H2 production from ethanol, Chem. Eng. Process. - Process
  • [203] Intensif. 74 (2013) 14–18.
  • [204] https://doi.org/10.1016/j.cep.2013.10.006.
  • [205] [52] R. Baruah, M. Dixit, A. Parejiya, P. Basarkar, A.
  • [206] Bhargav, S. Sharma, Oxidative steam reforming of ethanol on
  • [207] rhodium catalyst – I: Spatially resolved steady-state
  • [208] experiments and microkinetic modeling, Int. J. Hydrogen
  • [209] Energy. 42 (2017) 10184–10198.
  • [210] https://doi.org/10.1016/j.ijhydene.2017.03.168.
  • [211] [53] CNI, Hidrogênio sustentável: perspectivas e potencial
  • [212] para a indústria brasileira, 2022"
Como citar:

FREITAS, Bárbara Rodrigues; LAGO, Letícia Avelar Bergeron; FREGADOLLI, Ana Clara Lourenço; LOPES, Gustavo Santos; LOPES, Marcus Vinícius Oliveira; DOUBEK, Gustavo; OLIVEIRA JR. Fernando de, ; "Produção de hidrogênio pela reforma do etanol: análise crítica e roteiro tecnológico", p. 42-57 . In: Anais do XXX Simpósio Internacional de Engenharia Automotiva . São Paulo: Blucher, 2023.
ISSN 2357-7592, DOI 10.5151/simea2023-PAP12

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações