Artigo completo - Open Access.

Idioma principal | Segundo idioma

Perspectivas para a física de ultralargas escalas: inflação e efeitos relativísticos

Perspectives for ultralarge-scale physics: inflation and relativistic effects

Guandalin, Caroline ;

Artigo completo:

Esforços para observar as maiores escalas do Universo com levantamentos de galáxias futuros são motivados pelo desejo de detectar correlações oriundas de um possível período inflacionário e da possibilidade de restringir fenômenos que vão além da relatividade geral. Em escalas extremamente grandes, a abordagem Newtoniana é insuficiente para modelar o espectro de potências e o bispectro. Portanto, para interpretarmos corretamente as medidas em tais escalas, devemos considerar um tratamento relativístico e independente de calibre para as observáveis cosmológicas (e.g. contagem de galáxias). Revisarei as principais características físicas das escalas ultralargas (i.e., da ordem do horizonte cosmológico), dando particular atenção para possíveis equívocos na restrição de parâmetros inflacionários e para a característica mais marcante do espectro e bispectro relativísticos: a presença de momentos ímpares na expansão de Legendre. Também mostrarei, brevemente, como é possível utilizar halos contidos em um cone de luz de uma simulação de N-corpos relativística para modelar e recuperar o dipolo relativístico.

Artigo completo:

Efforts to observe the largest scales of the Universe with surveys of future galaxies are motivated by the desire to detect correlations arising from a possible inflationary period and the possibility of restricting phenomena that go beyond general relativity. At extremely large scales, the Newtonian approach is insufficient to model the power spectrum and the bispectrum. Therefore, to correctly interpret measurements on such scales, we must consider a relativistic and gauge-independent treatment for cosmological observables (e.g. galaxy counts). I will review the main physical characteristics of ultrawide scales (i.e., of the order of the cosmological horizon), paying particular attention to possible mistakes in the restriction of inflationary parameters and to the most striking feature of the relativistic spectrum and bispectrum: the presence of odd moments in the Legendre expansion. I will also briefly show how it is possible to use halos contained in a cone of light from a relativistic N-body simulation to model and recover the relativistic dipole.

Palavras-chave: estrutura em larga escala do universo, efeitos relativísticos, inflação cósmica,

Palavras-chave: large-scale structure of the universe, relativistic effects, cosmic inflation,

DOI: 10.5151/astrocientistas2021-6

Referências bibliográficas
  • [1] Chris Smeenk. Philosophy of cosmology. In Robert Batterman, editor, Oxford Handbook of Philosophy of Physics, pages 607–652. Oxford: Oxford University Press, 2013.
  • [2] Nabila Aghanim, Yashar Akrami, M Ashdown, J Aumont, C Baccigalupi, M Ballardini, AJ Banday, RB Barreiro, N Bartolo, S Basak, et al. Planck 2018 results-vi. cosmological parameters. Astronomy & Astrophysics, 641:A6, 2020.
  • [3] Juan Maldacena. Non-gaussian features of primordial fluctuations in single field inflationary models. Journal of High Energy Physics, 2003(05):013, May 200
  • [4] K.N. Abazajian, K. Arnold, J. Austermann, B.A. Benson, C. Bischoff, J. Bock, J.R. Bond, J. Borrill, I. Buder, D.L. Burke, and et al. Inflation physics from the cosmic microwave background and large scale structure. Astroparticle Physics, 63:55–65, Mar 2015.
  • [5] Marcelo Alvarez, Tobias Baldauf, J Richard Bond, Neal Dalal, Roland de Putter, Olivier Doré, Daniel Green, Chris Hirata, Zhiqi Huang, Dragan Huterer, et al. Testing inflation with large scale structure: connecting hopes with reality. arXiv preprint arXiv:1412.4671, 2014.
  • [6] Dionysios Karagiannis, Andrei Lazanu, Michele Liguori, Alvise Raccanelli, Nicola Bartolo, and Licia Verde. Constraining primordial non-gaussianity with bispectrum and power spectrum from upcoming optical and radio surveys. Monthly Notices of the Royal Astronomical Society, 478(1):1341–1376, Apr 2018.
  • [7] Jeremy L. Tinker, Brant E. Robertson, Andrey V. Kravtsov, Anatoly Klypin, Michael S. Warren, Gustavo Yepes, and Stefan Gottlöber. The large scale bias of dark matter halos: Numerical calibration and model tests. The Astrophysical Journal, 724(2):878–886, Nov 2010.
  • [8] Y Akrami, F Arroja, M Ashdown, J Aumont, C Baccigalupi, M Ballardini, AJ Banday, RB Barreiro, N Bartolo, S Basak, et al. Planck 2018 results-ix. constraints on primordial non-gaussianity. Astronomy & Astrophysics, 641:A9, 2020.
  • [9] Neal Dalal, Olivier Doré, Dragan Huterer, and Alexander Shirokov. Imprints of primordial non-gaussianities on large-scale structure: Scale-dependent bias and abundance of virialized objects. Physical Review D, 77(12):123514, Jun 2008.
  • [10] Anže Slosar, Christopher Hirata, Uroš Seljak, Shirley Ho, and Nikhil Padmanabhan. Constraints on local primordial non-gaussianity from large scale structure. Journal of Cosmology and Astroparticle Physics, 2008(08):031, Aug 2008.
  • [11] Eiichiro Komatsu and David N. Spergel. Acoustic signatures in the primary microwave background bispectrum. Physical Review D, 63:063002, Feb 2001.
  • [12] Michele Liguori, Emiliano Sefusatti, James R Fergusson, and EPS Shellard. Primordial non-gaussianity and bispectrum measurements in the cosmic microwave background and large-scale structure. Advances in Astronomy, 2010, 2010.[13] Emanuele Castorina, Nick Hand, Uroš Seljak, Florian Beutler, Chia-Hsun Chuang, Cheng Zhao, Héctor Gil-Marín, Will J. Percival, Ashley J. Ross, Peter Doohyun Choi, and et al. Redshift-weighted constraints on primordial non-gaussianity from the clustering of the eboss dr14 quasars in fourier space. Journal of Cosmology and Astroparticle Physics, 2019(09):010, Sep 2019.
  • [13] [14] R. Laureijs, J. Amiaux, S. Arduini, J. L. Auguères, J. Brinchmann, R. Cole, M. Cropper, C. Dabin, L. Duvet, A. Ealet, B. Garilli, P. Gondoin, L. Guzzo, J. Hoar, H. Hoekstra, R. Holmes, T. Kitching, T. Maciaszek, Y. Mellier, F. Pasian, W. Percival, J. Rhodes, G. Saavedra Criado, M. Sauvage, R. Scaramella, L. Valenziano, S. Warren, R. Bender, F. Castander, A. Cimatti, O. Le Fèvre, H. Kurki-Suonio, M. Levi, P. Lilje, G. Meylan, R. Nichol, K. Pedersen, V. Popa, R. Rebolo Lopez, H. W. Rix, H. Rottgering, W. Zeilinger, F. Grupp, P. Hudelot, R. Massey, M. Meneghetti, L. Miller, S. Paltani, S. Paulin-Henriksson, S. Pires, C. Saxton, T. Schrabback, G. Seidel, J. Walsh, N. Aghanim, L. Amendola, J. Bartlett, C. Baccigalupi, J. P. Beaulieu, K. Benabed, J. G. Cuby, D. Elbaz, P. Fosalba, G. Gavazzi, A. Helmi, I. Hook, M. Irwin, J. P. Kneib, M. Kunz, F. Mannucci, L. Moscardini, C. Tao, R. Teyssier, J. Weller, G. Zamorani, M. R. Zapatero Osorio, O. Boulade, J. J. Foumond, A. Di Giorgio, P. Guttridge, A. James, M. Kemp, J. Martignac, A. Spencer, D. Walton, T. Blümchen, C. Bonoli, F. Bortoletto, C. Cerna, L. Corcione, C. Fabron, K. Jahnke, S. Ligori, F. Madrid, L. Martin, G. Morgante, T. Pamplona, E. Prieto, M. Riva, R. Toledo, M. Trifoglio, F. Zerbi, F. Abdalla, M. Douspis, C. Grenet, S. Borgani, R. Bouwens, F. Courbin, J. M. Delouis, P. Dubath, A. Fontana, M. Frailis, A. Grazian, J. Koppenhöfer, O. Mansutti, M. Melchior, M. Mignoli, J. Mohr, C. Neissner, K. Noddle, M. Poncet, M. Scodeggio, S. Serrano, N. Shane, J. L. Starck, C. Surace, A. Taylor, G. Verdoes-Kleijn, C. Vuerli, O. R. Williams, A. Zacchei, B. Altieri, I. Escudero Sanz, R. Kohley, T. Oosterbroek, P. Astier, D. Bacon, S. Bardelli, C. Baugh, F. Bellagamba, C. Benoist, D. Bianchi, A. Biviano, E. Branchini, C. Carbone, V. Cardone, D. Clements, S. Colombi, C. Conselice, G. Cresci, N. Deacon, J. Dunlop, C. Fedeli, F. Fontanot, P. Franzetti, C. Giocoli, J. Garcia-Bellido, J. Gow, A. Heavens, P. Hewett, C. Heymans, A. Holland, Z. Huang, O. Ilbert, B. Joachimi, E. Jennins, E. Kerins, A. Kiessling, D. Kirk, R. Kotak, O. Krause, O. Lahav, F. van Leeuwen, J. Lesgourgues, M. Lombardi, M. Magliocchetti, K. Maguire, E. Majerotto, R. Maoli, F. Marulli, S. Maurogordato, H. McCracken, R. McLure, A. Melchiorri, A. Merson, M. Moresco, M. Nonino, P. Norberg, J. Peacock, R. Pello, M. Penny, V. Pettorino, C. Di Porto, L. Pozzetti, C. Quercellini, M. Radovich, A. Rassat, N. Roche, S. Ronayette, E. Rossetti, B. Sartoris, P. Schneider, E. Semboloni, S. Serjeant, F. Simpson, C. Skordis, G. Smadja, S. Smartt, P. Spano, S. Spiro, M. Sullivan, A. Tilquin, R. Trotta, L. Verde, Y. Wang, G. Williger, G. Zhao, J. Zoubian, and E. Zucca. Euclid definition study report. preprint, (arXiv:1110.3193), 2011.
  • [14] [15] Héctor Gil-Marín, Jorge Noreña, Licia Verde, Will J. Percival, Christian Wagner, Marc Manera, and Donald P. Schneider. The power spectrum and bispectrum of sdss dr11 boss galaxies – i. bias and gravity. Monthly Notices of the Royal Astronomical Society, 451(1):539–580, May 2015.
  • [15] [16] Uroš Seljak. Extracting primordial non-gaussianity without cosmic variance. Physical Review Letters, 102(2):021302, Jan 2009.
  • [16] [17] L. R. Abramo and K. E. Leonard. Why multitracer surveys beat cosmic variance. Monthly Notices of the Royal Astronomical Society, 432(1):318–326, Apr 2013.
  • [17] [18] L. Raul Abramo, Lucas F. Secco, and Arthur Loureiro. Fourier analysis of multitracer cosmological surveys. Monthly Notices of the Royal Astronomical Society, 455(4):3871–3889, Dec 2015.
  • [18] [19] David Bacon, Sarah Bridle, Filipe B Abdalla, Michael Brown, Philip Bull, Stefano Camera, Rob Fender, Keith Grainge, Zeljko Ivezic, Matt Jarvis, et al. Synergy between the large synoptic survey telescope and the square kilometre array. arXiv preprint arXiv:1501.03977, 2015.
  • [19] [20] Thomas D. Kitching, David Bacon, Michael L. Brown, Philip Bull, Jason D. McEwen, Masamune Oguri, Roberto Scaramella, Keitaro Takahashi, Kinwah Wu, and Daisuke Yamauchi. Euclid & ska synergies, 2015.
  • [20] [21] Jason Rhodes, Robert C Nichol, Éric Aubourg, Rachel Bean, Dominique Boutigny, Malcolm N Bremer, Peter Capak, Vincenzo Cardone, Benoît Carry, Christopher J Conselice, et al. Scientific synergy between lsst and euclid. The Astrophysical Journal Supplement Series, 233(2):21, 2017.
  • [21] [22] Bhuvnesh Jain and Edmund Bertschinger. Second order power spectrum and nonlinear evolution at high redshift. The Astrophysical Journal, 431:495–505, 1994.
  • [22] [23] S. Matarrese, L. Verde, and A. F. Heavens. Large-scale bias in the universe: bispectrum method. Monthly Notices of the Royal Astronomical Society, 290(4):651–662, Oct 1997.
  • [23] [24] Francis Bernardeau, S Colombi, E Gaztañaga, and R Scoccimarro. Large-scale structure of the universe and cosmological perturbation theory. Physics reports, 367(1-3):1–248, 2002.
  • [24] [25] Azadeh Moradinezhad Dizgah, Matteo Biagetti, Emiliano Sefusatti, Vincent Desjacques, and Jorge Noreña. Primordial non- gaussianity from biased tracers: likelihood analysis of real-space power spectrum and bispectrum. Journal of Cosmology and Astroparticle Physics, 2021(05):015, May 2021.
  • [25] [26] Héctor Gil-Marín, Christian Wagner, Frantzeska Fragkoudi, Raul Jimenez, and Licia Verde. An improved fitting formula for the dark matter bispectrum. Journal of Cosmology and Astroparticle Physics, 2012(02):047–047, Feb 2012.
  • [26] [27] Emanuele Castorina and Enea di Dio. The observed galaxy power spectrum in general relativity, 2021.
  • [27] [28] Christian Fidler, Thomas Tram, Cornelius Rampf, Robert Crittenden, Kazuya Koyama, and David Wands. General relativis- tic weak-field limit and newtonian n-body simulations. Journal of Cosmology and Astroparticle Physics, 2017(12):022–022, Dec 2017.
  • [28] [29] Julian Adamek and Christian Fidler. The large-scale general-relativistic correction for newtonian mocks. Journal of Cosmology and Astroparticle Physics, 2019(09):026, 2019.
  • [29] [30] Julian Adamek, David Daverio, Ruth Durrer, and Martin Kunz. General relativity and cosmic structure formation. Nature Phys., 12(4):346–349, Mar 2016.
  • [30] [31] Jaiyul Yoo. General relativistic description of the observed galaxy power spectrum: Do we understand what we measure? Physical Review D, 82(8), Oct 2010.
  • [31] [32] Obinna Umeh, Sheean Jolicoeur, Roy Maartens, and Chris Clarkson. A general relativistic signature in the galaxy bispec- trum: the local effects of observing on the lightcone. Journal of Cosmology and Astroparticle Physics, 2017(03):034–034, Mar 2017.
  • [32] [33] Mike (Shengbo) Wang, Florian Beutler, and David Bacon. Impact of relativistic effects on the primordial non-gaussianity signature in the large-scale clustering of quasars. Monthly Notices of the Royal Astronomical Society, 499(2):2598–2607, Sep 2020.
  • [33] [34] Nick Kaiser. On the spatial correlations of Abell clusters. The Astrophysical Journal: Letters, 284:L9–L12, 9 1984.
  • [34] [35] Patrick McDonald. Gravitational redshift and other redshift-space distortions of the imaginary part of the power spectrum. Journal of Cosmology and Astroparticle Physics, 2009(11):026, Nov 2009.
  • [35] [36] Mario Ballardini, William L Matthewson, and Roy Maartens. Constraining primordial non-gaussianity using two galaxy surveys and cmb lensing. Monthly Notices of the Royal Astronomical Society, 489(2):1950–1956, Aug 2019.
  • [36] [37] Michel-Andrès Breton, Yann Rasera, Atsushi Taruya, Osmin Lacombe, and Shohei Saga. Imprints of relativistic effects on the asymmetry of the halo cross-correlation function: from linear to non-linear scales. Monthly Notices of the Royal Astronomical Society, 483(2):2671–2696, 11 2018.
  • [37] [38] Camille Bonvin, Lam Hui, and Enrique Gaztañaga. Asymmetric galaxy correlation functions. Physical Review D, 89:083535, Apr 2014.
  • [38] [39] Camille Bonvin. Isolating relativistic effects in large-scale structure. Classical and Quantum Gravity, 31(23):234002, 2014.
  • [39] [40] Jaiyul Yoo and Matias Zaldarriaga. Beyond the linear-order relativistic effect in galaxy clustering: second-order gauge- invariant formalism. Physical Review D, 90(2):023513, 2014.
  • [40] [41] Sheean Jolicoeur, Obinna Umeh, Roy Maartens, and Chris Clarkson. Imprints of local lightcone projection effects on the galaxy bispectrum. part iii. relativistic corrections from nonlinear dynamical evolution on large-scales. Journal of Cosmology and Astroparticle Physics, 2018(03):036–036, Mar 2018.
  • [41] [42] Chris Clarkson, Eline M de Weerd, Sheean Jolicoeur, Roy Maartens, and Obinna Umeh. The dipole of the galaxy bispectrum. Monthly Notices of the Royal Astronomical Society: Letters, 486(1):L101–L104, 05 2019.
  • [42] [43] Julian Adamek, David Daverio, Ruth Durrer, and Martin Kunz. gevolution: a cosmological n-body code based on general relativity. Journal of Cosmology and Astroparticle Physics, 2016(07):053, Jul 2016.
  • [43] [44] Alexander I. Merson, Carlton M. Baugh, John C. Helly, Violeta Gonzalez-Perez, Shaun Cole, Richard Bielby, Peder Norberg, Carlos S. Frenk, Andrew J. Benson, Richard G. Bower, and et al. Lightcone mock catalogues from semi-analytic models of galaxy formation – i. construction and application to the bzk colour selection. Monthly Notices of the Royal Astronomical Society, 429(1):556–578, Dec 2012.
  • [44] [45] Alex Smith, Shaun Cole, Carlton Baugh, Zheng Zheng, Raúl Angulo, Peder Norberg, and Idit Zehavi. A lightcone catalogue from the millennium-xxl simulation. Monthly Notices of the Royal Astronomical Society, 470(4):4646–4661, Jun 2017.
  • [45] [46] Peter S. Behroozi, Risa H. Wechsler, and Hao-Yi Wu. The rockstar phase-space temporal halo finder and the velocity offsets of cluster cores. The Astrophysical Journal, 762(2):109, Dec 2012.
  • [46] [47] Louis Coates, Julian Adamek, Philip Bull, Caroline Guandalin, and Chris Clarkson. Observing relativistic features in large-scale structure surveys – ii. doppler magnification in an ensemble of relativistic simulations. Monthly Notices of the Royal Astronomical Society, 504(3):3534–3543, Apr 2021.
  • [47] [48] Caroline Guandalin, Julian Adamek, Philip Bull, Chris Clarkson, L Raul Abramo, and Louis Coates. Observing relativistic features in large-scale structure surveys – i. multipoles of the power spectrum. Monthly Notices of the Royal Astronomical Society, 501(2):2547–2561, Dec 2020.
  • [48] [49] Kazuhiro Yamamoto, Masashi Nakamichi, Akinari Kamino, Bruce A. Bassett, and Hiroaki Nishioka. A Measurement of the Quadrupole Power Spectrum in the Clustering of the 2dF QSO Survey. PASJ, 58(1):93–102, 02 2006.
  • [49] [50] Davide Bianchi, Héctor Gil-Marín, Rossana Ruggeri, and Will J. Percival. Measuring line-of-sight-dependent Fourier-space clustering using FFTs. Monthly Notices of the Royal Astronomical Society: Letters, 453(1):L11–L15, 08 2015.
  • [50] [51] Román Scoccimarro. Fast estimators for redshift-space clustering. Physical Review D, 92(8):083532, Oct 2015.
  • [51] [52] Florian Beutler, Hee-Jong Seo, Shun Saito, Chia-Hsun Chuang, Antonio J. Cuesta, Daniel J. Eisenstein, Héctor Gil-Marín, Jan Niklas Grieb, Nick Hand, Francisco-Shu Kitaura, Chirag Modi, Robert C. Nichol, Matthew D. Olmstead, Will J. Percival, Francisco Prada, Ariel G. Sánchez, Sergio Rodriguez-Torres, Ashley J. Ross, Nicholas P. Ross, Donald P. Schneider, Jeremy Tinker, Rita Tojeiro, and Mariana Vargas-Magaña. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: anisotropic galaxy clustering in Fourier space. Monthly Notices of the Royal Astronomical Society, 466(2):2242–2260, 12 2016.
  • [52] [53] Florian Beutler and Enea Di Dio. Modeling relativistic contributions to the halo power spectrum dipole. Journal of Cosmology and Astroparticle Physics, 2020(07):048, Jul 2020.
  • [53] [54] Gong-Bo Zhao, Yuting Wang, Atsushi Taruya, Weibing Zhang, Hector Gil-Marin, Arnaud de Mattia, Ashley J. Ross, Anand Raichoor, Cheng Zhao, Will J. Percival, Shadab Alam, Julian E. Bautista, Etienne Burtin, Chia-Hsun Chuang, Kyle S. Dawson, Jean-Paul Kneib, Kazuya Koyama, Helion du Mas des Bourboux, Eva-Maria Mueller, Jeffrey A. Newman, John A. Peacock, Graziano Rossi, Vanina Ruhlmann-Kleider, Donald P. Schneider, and Arman Shafieloo. The completed sdss-iv extended baryon oscillation spectroscopic survey: a multi-tracer analysis in fourier space for measuring the cosmic structure growth and expansion rate. preprint, (arXiv:2007.09011), 2020.
  • [54] [55] Andrej Obuljen and Will J. Percival. Anisotropic effective redshift and evolving clustering amplitude. Journal of Cosmology and Astroparticle Physics, 2021(11):006, Nov 2021.
Como citar:

Guandalin, Caroline; "Perspectivas para a física de ultralargas escalas: inflação e efeitos relativísticos", p. 44-58 . In: Anais do I Encontro Brasileiro de Meninas e Mulheres da Astrofísica, Gravitação e Cosmologia - As Astrocientistas. São Paulo: Blucher, 2022.
ISSN 2358-2359, DOI 10.5151/astrocientistas2021-6

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações