Article - Open Access.

Idioma principal | Segundo idioma

PARÂMETROS DE CRESCIMENTO DE SPIRULINA SP. (LEB18) UTILIZADA COMO AGENTE PARA REMOÇÃO DE NUTRIENTES EM ÁGUA RESIDUAL DA AQUICULTURA

GROWTH PARAMETERS OF SPIRULINA SP. (LEB18) USED AS AN AGENT FOR THE REMOVAL OF NUTRIENTS IN AQUACULTURE RESIDUAL WATER

Borges, Ana Victória dos Santos ; Cardoso, Lucas Guimarães ; Duarte, Jessica Hartwig ; Costa, Jorge Alberto Vieira ; Assis, Denilson de Jesus ; Druzian, Janice Izabel ; Chinalia, Fabio Alexandre ; Galván, Karina Lizzeth Pedraza ; , ;

Article:

O objetivo foi produzir Spirulina sp. (LEB 18) biomassa pela reutilização e tratamento de águas residuárias da aquicultura, determinando o melhor desempenho produtivo através de parâmetros cinéticos. Os cultivos foram realizados em fotobiorreatores (1L) com 100% de água residual de aquicultura suplementada com T-25, T-50, T-75. Não houve diferença significativa na concentração de biomassa nos tratamentos 50% (1,02 gL-1), 25% (1,10 gL-1) e controle (1,05 gL-1). Assim, o tratamento com 25% representa uma alternativa eficiente, barata e sustentável para o setor de aquicultura, reduzindo os impactos das descargas de efluentes, produzindo biomassa de baixo custo com características diferenciadas e alto valor agregado.

Article:

The objective was to produce Spirulina sp. (LEB 18) biomass by reuse and treatment of aquaculture wastewater, determining the best productive performance through kinetic parameters. Cultures were performed in photobioreactors (1L) with 100% residual aquaculture water supplemented with T-25, T-50, T-75. There was no significant difference in biomass concentration in the 50% (1.02 gL-1), 25% (1.10 gL-1) and control (1.05 gL-1) treatments. Thus, the 25% treatment represents an efficient, cheap and sustainable alternative for the aquaculture sector, reducing the impacts of effluent discharges, producing low cost biomass with different characteristics and high added value.

Palavras-chave: microalga; água residual; aquicultura,

Palavras-chave: microalgae; wastewater; aquaculture,

DOI: 10.5151/siintec2019-116

Referências bibliográficas
  • [1] 1 Wuang, S. C. Khin, M. C. Chua, P. Q. D. Luo, Y. D. (2016). Use of Spirulina biomass produced from treatment of aquaculture wastewater as agricultural fertilizers. Algal Res, 15, 59–64.
  • [2] 2 Ferreira, J. G. L. Falconer, J. Kittiwanich, L. Ross, C. Saurel, K. Wellman, C. B. Z. P. Suvanacha. (2015). Analysis of production and environmental effects of Nile tilapia and white shrimp culture in Thailand. Aquac. Res 447, 23–36.
  • [3] 3 Salama, E. Byong-Hun, J. B. Chang, W. S. Lee, S. Roh, H. Yang, I. (2017). Interactive effect of indole-3-acetic acid and diethyl aminoethyl hexanoate on the growth and fatty acid content of some microalgae for biodiesel production. J. Clean. Prod, 168, 1017–1024.
  • [4] 4 Costa, J.A.V. Colla, L.M. Duarte Filho, P. Kabke, K. Weber, A. (2004). Modelling of Spirulina platensis growth in fresh water using response surface methodology. World J Ind Microbiol Biotechnol , 18, 603-607.
  • [5] 5 Kuo, C. Chen, T. Lin, T. Kao, C. Lai, J. Chang, J. Lin, C. (2015). Cultivation of Chlorella sp., GD using piggery wastewater for biomass and lipid production. Bioresour. Technol, 194, 326–333.
  • [6] 6 Daneshvar, E. Antikainen, L. Koutrac, E. Kornarosc, M. Bhatnagara, A. (2018). Investigation on the feasibility of Chlorella vulgaris cultivation in a mixture of pulp and aquaculture effluents: Treatment of wastewater and lipid extraction. Bioresour. Technol, 255, 104–110.
  • [7] 7 Zhou, W. Yanting, L. Goa Y. Haixia Z. (2017). Nutrients removal and recovery from saline wastewater by Spirulina platensis. Bioresour. Technol, 245, 10–1
  • [8] 8 Xu, X. Wang, J. Zhang, T. Dao, G. Wu, G. Hu, H. (2017). Attached microalgae cultivation and nutrients removal in a novel capillary-driven photo-bio film reactor. Algal Res, 32, 198-205.
  • [9] 9 Lu, W. Alam, M.A. Luo, W. Asmatulu, E. (2019). Integrating Spirulina platensis cultivation and aerobic composting exhaust for carbon mitigation and biomass production. Bioresour. Technol, 271, 59-65.
  • [10] 10 Ramsundar, P. Abhishek G, Singh P. Pillay, K. Bux, F. (2017). Evaluation of wate activated sludge as a potential nutrient source for cultivation of Chlorella sorokiniana. Algal Res, 28,108-117.
  • [11] 11 Yang, F. Xiang, W. Fan, J. Wu, H. Li, T. Long, L. (2016). High pH-induced flocculation of marine Chlorella sp. for biofuel production. J Appl Phycol, 28, 747–756.
  • [12] 12 Cheirsilp, B and Torpee, S. (2012). Enhanced growth and lipid production of microalgae under mixotrophic culture condition: effect of light intensity, glucose concentration and fed-batch cultivation. Bioresour. Technol, 110, 510–516.
  • [13] 13 Luo, L. He, H. Yang, C. Wen, S. Zeng, G. Wu, M. Zhou, Z. Lou, W. (2016). Nutrient removal and lipid production by Coelastrella sp. in anaerobically and aerobically treated swine wastewater. Bioresour. Technol, 216, 135–141.
  • [14] 14 Egloff, S. Tschudi, F. Schmautz, Z. Refardt, D. (2018). High-density cultivation of microalgae continuously fed with unfiltered water from a recirculating aquaculture system. Algal Res, 34, 68-74.
Como citar:

Borges, Ana Victória dos Santos; Cardoso, Lucas Guimarães; Duarte, Jessica Hartwig; Costa, Jorge Alberto Vieira; Assis, Denilson de Jesus; Druzian, Janice Izabel; Chinalia, Fabio Alexandre; Galván, Karina Lizzeth Pedraza; , ; "PARÂMETROS DE CRESCIMENTO DE SPIRULINA SP. (LEB18) UTILIZADA COMO AGENTE PARA REMOÇÃO DE NUTRIENTES EM ÁGUA RESIDUAL DA AQUICULTURA", p. 925-932 . In: Anais do V Simpósio Internacional de Inovação e Tecnologia. São Paulo: Blucher, 2019.
ISSN 2357-7592, DOI 10.5151/siintec2019-116

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações