Setembro 2025 vol. 12 num. 1 - XXXII Simpósio Internacional de Engenharia

Trabalhos selecionados para publicação apenas - Open Access.

Idioma principal | Segundo idioma

Nova geração de anéis com recobrimento PVD para motores flex fuel de alta performance

New generation of PVD coated rings for high performance flex fuel engines

MAZUCO, Felipe ; REZENDE, Luiz Felipe ; BRUNO, Rafael Antonio ; ARAUJO, Juliano Avelar ;

Trabalhos selecionados para publicação apenas:

Um problema já conhecido para revestimentos de anel de pistão em combinação com o uso de etanol são as micro trincas e destacamentos localizados. Melhorias nos revestimentos de CrN foram feitas junto com o desenvolvimento dos motores flex. No entanto, com a introdução de novas legislações no Brasil para aumentar a eficiência dos motores e reduzir as emissões, as montadoras foram levadas a atualizarem seus motores em termos de hardware e calibração levando a maiores cargas termomecânicas. Os revestimentos de CrN otimizados foram impactados diretamente pelo ambiente tribológico severo e retornaram a sofrer ocorrências de micro trincas e de destacamentos localizados. Este trabalho aborda a última geração de revestimentos de PVD, dopando o CrN com Alumínio e adotando uma estrutura em nanocamadas. O Nitreto de Cromo Alumínio (CrAlN) oferece dureza superior, estabilidade térmica e química aumentadas e a coesão melhorada do revestimento. A arquitetura em nanocamadas, conseguida através da modulação do teor de alumínio, atua como uma barreira para a propagação de trincas. Testes de motor confirmaram que o novo revestimento permanece livre de micro trincas e destacamentos, mesmo sob condições motores flex-fuel altamente carregados.

Trabalhos selecionados para publicação apenas:

A well-known issue with piston ring coatings in combination with ethanol use is the occurrence of microcracks and spalling. Specific improvements in the CrN coatings were made along with the flex fuel engines development. However, the introduction of new legislations in Brazil to increase engine efficiency and lower emissions led the automakers to upgrade their engines in terms of hardware and calibration with the consequence of increased thermomechanical loads. The improved CrN coatings were directly impacted by such harsher tribological environment returning to suffer from microcracks and spalling occurrences. The latest generation of PVD coatings addresses these challenges by incorporating aluminum into CrN and adopting a nanolayered structure. Chromium Aluminum Nitride (CrAlN) offers superior hardness, enhanced thermal and chemical stability, and improved coating toughness. The nanolayered architecture, achieved through modulation of the aluminum content, acts as a barrier for crack propagation. Engine tests have confirmed that the new coating remains free from microcracks and spalling, even under high-load conditions in flex-fuel engines.

Palavras-chave: -,

Palavras-chave: -,

DOI: 10.5151/simea2025-PAP43

Referências bibliográficas
  • [1] Ferrarese, A., Marques, G., Tomanik, E., Bruno, R., & Vatavuk, J. (2010). Piston Ring Tribological Challenges on the Next Generation of Flex-fuel Engines. SAE International Journal of Engines, 3(2), 85–9 http://www.jstor.org/stable/26275548
  • [2] Khuong, L. S., Zulkifli, N. W. M., Masjuki, H. H., Mohamad, E. N., Arslan, A., Mosarof, M. H., & Azham, A. (2016). A review on the effect of bioethanol dilution on the properties and performance of automotive lubricants in gasoline engines. RSC advances, 6(71), 66847-66869. https://doi.org/10.1039/C6RA10003A
  • [3] Araujo, J. A., Araujo, G. M., Souza, R. M., & Tschiptschin, A. P. (2015). Effect of periodicity on hardness and scratch resistance of CrN/NbN nanoscale multilayer coating deposited by cathodic arc technique. Wear, 330, 469-477. https://doi.org/10.1016/j.wear.2015.01.051
  • [4] Zhou, Z., Rainforth, W. M., Falke, U., Falke, M., Bleloch, A., & Hovsepian, P. E. (2007). On the structure and composition of nanoscale TiAlN/VN multilayers. Philosophical Magazine, 87(6), 967-978. https://doi.org/10.1080/14786430601019433
  • [5] Purandare, Y. P., Ehiasarian, A. P., & Hovsepian, P. E. (2008). Deposition of nanoscale multilayer CrN/NbN physical vapor deposition coatings by high power impulse magnetron sputtering. Journal of Vacuum Science & Technology A, 26(2), 288-296. https://doi.org/10.1116/1.2839855
  • [6] Ljungcrantz, H., Engström, C., Hultman, L., Olsson, M., Chu, X., Wong, M. S., & Sproul, W. D. (1998). Nanoindentation hardness, abrasive wear, and microstructure of TiN/NbN polycrystalline nanostructured multilayer films grown by reactive magnetron sputtering. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 16(5), 3104-3113. https://doi.org/10.1116/1.581466
  • [7] Selinder, T. I., Sjöstrand, M. E., Nordin, M., Larsson, M., Östlund, Å., & Hogmark, S. (1998). Performance of PVD TiN/TaN and TiN/NbN superlattice coated cemented carbide tools in stainless steel machining. Surface and coatings technology, 105(1-2), 51-55. https://doi.org/10.1016/S0257-8972(98)00446-0
  • [8] Zhitomirsky, V. N., Grimberg, I., Rapoport, L., Travitzky, N. A., Boxman, R. L., Goldsmith, S., & Weiss, B. Z. (1999). Vacuum arc deposition of TiN, NbN and TiN/NbN multi-layer coatings. Surface and Coatings Technology, 120, 219-225. https://doi.org/10.1016/S0257-8972(99)00382-5
  • [9] Mani, S. P., Agilan, P., Kalaiarasan, M., Ravichandran, K., Rajendran, N., & Meng, Y. (2022). Effect of multilayer CrN/CrAlN coating on the corrosion and contact resistance behavior of 316L SS bipolar plate for high temperature proton exchange membrane fuel cell. Journal of Materials Science & Technology, 97, 134-146. https://doi.org/10.1016/j.jmst.2021.04.043
  • [10] Setoyama, M., Nakayama, A., Tanaka, M., Kitagawa, N., & Nomura, T. (1996). Formation of cubic-A1N in TiN/A1N superlattice. Surface and Coatings Technology, 86, 225-230. https://doi.org/1016/S0257-8972(96)03033-2
  • [11] Münz, W. D., Donohue, L. A., & Hovsepian, P. E. (2000). Properties of various large-scale fabricated TiAlN-and CrN-based superlattice coatings grown by combined cathodic arc–unbalanced magnetron sputter deposition. Surface and Coatings Technology, 125(1-3), 269-277. https://doi.org/10.1016/S0257-8972(99)00572-1
  • [12] Wadsworth, I., Smith, I. J., Donohue, L. A., & Münz, W. D. (1997). Thermal stability and oxidation resistance of TiAlN/CrN multilayer coatings. Surface and Coatings Technology, 94, 315-321. https://doi.org/10.1016/S0257-8972(97)00353-8
  • [13] Luo, Q., Rainforth, W. M., & Münz, W. D. (1999). TEM observations of wear mechanisms of TiAlCrN and TiAlN/CrN coatings grown by combined steered-arc/unbalanced magnetron deposition. Wear, 225, 74-82. https://doi.org/10.1016/S0043-1648(99)00049-6
  • [14] Mendibide, C., Steyer, P., Fontaine, J., & Goudeau, P. (2006). Improvement of the tribological behaviour of PVD nanostratified TiN/CrN coatings—An explanation. Surface and Coatings Technology, 201(7), 4119-4124. https://doi.org/10.1016/j.surfcoat.2006.08.013
  • [15] Kadlec, S., Musil, J., Valvoda, V., Münz, W. D., Petersein, H., & Schroeder, J. (1990). TiN films grown by reactive magnetron sputtering with enhanced ionization at low discharge pressures. Vacuum, 41(7-9), 2233-2238. https://doi.org/10.1016/0042-207X(90)94233-G
  • [16] Hovsepian, P. E., Lewis, D. B., Luo, Q., & Farinotti, A. (2005). Corrosion resistance of CrN/NbN superlattice coatings grown by various physical vapour deposition techniques. Thin Solid Films, 488(1-2), 1-8. https://doi.org/10.1016/j.tsf.2005.03.016
  • [17] Lewis, D. B., Reitz, D., Wüstefeld, C., Ohser-Wiedemann, R., Oettel, H., Ehiasarian, A. P., & Hovsepian, P. E. (2006). Chromium nitride/niobium nitride nano-scale multilayer coatings deposited at low temperature by the combined cathodic arc/unbalanced magnetron technique. Thin Solid Films, 503(1-2), 133-142. https://doi.org/10.1016/j.tsf.2005.08.369
  • [18] Savisalo, T., Lewis, D. B., Luo, Q., Bolton, M., & Hovsepian, P. (2008). Structure of duplex CrN/NbN coatings and their performance against corrosion and wear. Surface and Coatings technology, 202(9), 1661-1667. https://doi.org/10.1016/j.surfcoat.2007.07.024
  • [19] Bemporad, E., Pecchio, C., De Rossi, S., & Carassiti, F. (2004). Characterisation and wear properties of industrially produced nanoscaled CrN/NbN multilayer coating. Surface and Coatings Technology, 188, 319-330. https://doi.org/10.1016/j.surfcoat.2004.08.069 AEA – Brazilian Society of Automotive Engineering - SIMEA 20259
  • [20] Ronkainen, H., Vihersalo, J., Varjus, S., Zilliacus, R., Ehrnstén, U., & Nenonen, P. (1997). Improvement of aC: H film adhesion by intermediate layers and sputter cleaning procedures on stainless steel, alumina and cemented carbide. Surface and Coatings Technology, 90(3), 190-196. https://doi.org/10.1016/S0257-8972(96)03131-3
  • [21] Chen, C. C., & Hong, F. C. N. (2005). Interfacial studies for improving the adhesion of diamond-like carbon films on steel. Applied Surface Science, 243(1-4), 296-303. https://doi.org/10.1016/j.apsusc.2004.09.085
  • [22] Anders, A. (2002). Cathodic arc plasma deposition. Vacuum Technology & Coating, 3, n. 7, 27–35 https://escholarship.org/uc/item/33n1m86d [23] Meng-Burany, X., & Alpas, A. T. (2007). FIB and TEM studies of damage mechanisms in DLC coatings sliding against aluminum. Thin Solid Films, 516(2-4), 325-335. https://doi.org/10.1016/j.tsf.2007.06.038
  • [23] Oliver, W. C., & Pharr, G. M. (1992). An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of materials research, 7(6), 1564-1583. https://doi.org/10.1557/JMR.1992.1564
  • [24] Ferreira, R., Martins, J., Carvalho, Ó., Sobral, L., Carvalho, S., & Silva, F. (2019). Tribological solutions for engine piston ring surfaces: an overview on the materials and manufacturing. Materials and Manufacturing Processes, 35(5), 498–520. https://doi.org/10.1080/10426914.2019.1692352
  • [25] Ding, X. Z., & Zeng, X. T. (2005). Structural, mechanical and tribological properties of CrAlN coatings deposited by reactive unbalanced magnetron sputtering. Surface and Coatings Technology, 200(5-6), 1372-1376. https://doi.org/10.1016/j.surfcoat.2005.08.072
  • [26] Yashar, P. C., & Sproul, W. D. (1999). Nanometer scale multilayered hard coatings. Vacuum, 55(3-4), 179-190. https://doi.org/10.1016/S0042-207X(99)00148-7
  • [27] Araujo, J. A., Souza, R. M., Lima, N. B. D., & Tschiptschin, A. P. (2016). Thick CrN/NbN multilayer coating deposited by cathodic arc technique. Materials Research, 20, 200-209. https://doi.org/10.1590/1980-5373-MR-2016-0293
  • [28] Araujo, J. A., Giorjão, R. A. R., Bettini, J., Souza, R. M., & Tschiptschin, A. P. (2016). Modeling intrinsic residual stresses built-up during growth of nanostructured multilayer NbN/CrN coatings. Surface and Coatings Technology, 308, 264-272. https://doi.org/10.1016/j.surfcoat.2016.07.108
  • [29] de Castilho, B. C. N. M., Rodrigues, A. M., Avila, P. R. T., Apolinario, R. C., Nossa, T. D. S., Walczak, M., ... & Pinto, H. C. (2022). Hybrid magnetron sputtering of ceramic superlattices for application in a next generation of combustion engines. Scientific Reports, 12(1), 2342. https://doi.org/10.1038/s41598-022-06131-9
  • [30] Mazuco, F. S., Rezende, L. F. V. R., Araujo, J. A., Pereira, J. I., & Souza, R. M. (2023). Parameters study of carbon bombardment step for enhanced adhesion of thick DLC coat
  • [31] Obert, P., Müller, T., Füßer, H. J., & Bartel, D. (2016). The influence of oil supply and cylinder liner temperature on friction, wear and scuffing behavior of piston ring cylinder liner contacts–A new model test. Tribology International, 94, 306-314. https://doi.org/10.1016/j.triboint.2015.08.026
Como citar:

MAZUCO, Felipe; REZENDE, Luiz Felipe; BRUNO, Rafael Antonio; ARAUJO, Juliano Avelar; "Nova geração de anéis com recobrimento PVD para motores flex fuel de alta performance", p. 207-215 . In: Anais do XXXII Simpósio Internacional de Engenharia. São Paulo: Blucher, 2025.
ISSN 2357-7592, DOI 10.5151/simea2025-PAP43

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações