Setembro 2025 vol. 12 num. 1 - XXXII Simpósio Internacional de Engenharia

Trabalho completo - Open Access.

Idioma principal | Segundo idioma

Motores a Hidrogênio de Alta Durabilidade: Um Estudo Comparativo entre Ferros Fundidos e Aços

High-Durability Hydrogen Combustion Engines: A Comparative Study of Cast Irons and Steels

OBARA, Rafael Brisolla ; VOIGT, Anna Louise ; FERRARESE, Andre ; CABEZAS, Carlos de Souza ; FANTIN, Luiza de Brito ; FERREIRA, Marcelo Moreira ; MOREIRA, Anna Ramus ; CHAVES, Luís Fernando Fiuza ;

Trabalho completo:

A transição global para a descarbonização posicionou o hidrogênio (H?) como vetor energético chave. Em motores de combustão, especialmente em veículos comerciais, o H? oferece alta eficiência em plena carga, tolerância ao H? de baixa pureza, menor custo e maior durabilidade frente a outras soluções zero emissão. Um desafio é a seleção de materiais resistentes a danos induzidos por H2 ? que reduzem a tenacidade e aumentam o risco de trincas. Aços inoxidáveis austeníticos resistem bem aos danos por H2, mas são caros e pouco resistentes ao desgaste. Aços de alta resistência oferecem maior resistência mecânica a custos mais baixos, mas são mais suscetíveis a danos. Os ferros fundidos surgem como alternativa promissora, combinando resistência, custo-benefício, propriedades térmicas e baixa suscetibilidade ao H2 devido às grafitas. Este estudo investiga o ataque por hidrogênio em alta temperatura (HTHA) em ferros fundidos e aços forjados. Amostras foram hidrogenadas por mais de 2.000 horas a 300 bar e 375?°C, simulando condições severas de motores a H?. Os resultados confirmaram a maior resistência dos ferros fundidos. Além disso, os achados foram comparados com normas globais para motores de combustão a H2, oferecendo insights para seleção de materiais duráveis em aplicações futuras.

Trabalho completo:

The global shift toward decarbonization has positioned hydrogen (H2) as a key energy vector. In combustion engines, especially for commercial vehicles, H2 offers high efficiency at full load, tolerance to low-purity H2, lower costs, and improved durability over other zero-emission solutions. A key challenge is selecting materials that withstand hydrogen induced damage ? a process that reduces toughness and increases cracking risk. Austenitic stainless steels resist hydrogen damage but are costly and have limited wear resistance. High-strength steels offer greater strength at lower costs but are more prone to hydrogen damage. Cast irons emerge as a promising alternative, combining strength, cost-effectiveness, thermal properties, and low susceptibility to hydrogendamage due to graphite. This study investigates high temperature hydrogen attack (HTHA) mechanism in cast irons and forged steels. Samples were hydrogenated in an autoclave for over 2,000 hours at 300 bar and 375°C, simulating severe H2 engine conditions. Results confirmed the superior resistance of cast irons. Additionally, findings were compared with global standards for H2 combustion engines, providing insights into material selection strategies to ensure high durability in future applications.

Palavras-chave: -,

Palavras-chave: -,

DOI: 10.5151/simea2025-PAP56

Referências bibliográficas
  • [1] IPCC (1992). The IPCC 1990 and 1992 Assessments. World Meteorological Organization and United Nations Environment Programme.
  • [2] UN (2015). Paris Agreement. United Nations.
  • [3] UNCTAD (2024). Countries agree $300 billion by 2035 for new climate finance goal – what next? UN Trade & Development.
  • [4] Crippa, M., et al. (2024). GHG emissions of all world countries. JRC Science for Policy Report. Publications Office of the European Union, Luxembourg.
  • [5] Restrepo-Flórez, J. M., Cuello-Penaloza, P., Canales, E., Witkowski, D., Rothamer, D. A., Hub alternative for the heavy-duty transportation sector. Sustainable Energy & Fuels, 7(3), 693-707.
  • [6] Noussan, M. (2023). The use of biomethane in internal combustion engines for public transport decarbonization: a case study. Energies, 16(24), 7995.
  • [7] Chakraborty, S. et al. (2022). Hydrogen energy as future of sustainable mobility. Frontiers in Energy Research, 10, 893475.
  • [8] Dash, S. K., et al. (2022). Hydrogen fuel for future mobility: Challenges and future aspects. Sustainability, 14(14), 8285.
  • [9] Jones, A., & Neilson, M. (2021). Battery electric vs hydrogen – Which is the future for electric vehicles. Murgitroyd.
  • [10] Tupy (2021). TUPY, Westport Fuel Systems and AVL work in partnership to develop world's most efficient hydrogen internal combustion engine pilot.
  • [11] MAN (2022). MAN Engines: The first dual fuel hydrogen engines in use on a work boat. MAN Newsroom Corporate.
  • [12] Cummins (2022). Cummins Inc. Debuts 15-Liter Hydrogen Engine at ACT Expo.
  • [13] DAF (2021). DAF'S XF Hydrogen wins 2022 truck innovation award. International Truck of the Year.
  • [14] Mercedes (2023). Hydrogen-powered Unimog as a climate-neutral commercial vehicle when in operation.
  • [15] Scania (2021). Scania and Westport Fuel Systems will cooperate in hydrogen research project.
  • [16] Iveco (2023). O novo motor de combustão de hidrogênio XC13 da FPT Industrials faz sua estreia em campo na copa do mundo de esqui de Flachau junto com a PRINOTH.
  • [17] Volvo Penta (2022). Volvo Penta and CMB. TECH partner on dual-fuel hydrogen engines.
  • [18] Ford Otosan (2024). Ford Trucks Achieves First Ignition of Multi-Cylinder Hydrogen Engine.
  • [19] MTU (2023). Hydrogen – Making combustion engines green.
  • [20] Rolls-Royce (2022). Rolls-Royce and easyJet set new world first.
  • [21] Hyundai (2025). HD Hyundai Infracore Hydrogen Engine Proven Performance in Frigid Temperatures of -20 degrees Celsius.
  • [22] Mitsubishi Heavy Industries (2025). MHIET Achieves Rated Operation of a 6-Cylinder 500kW-class Hydrogen Engine Generator Set – Demonstration Tests at Company's Sagamihara Plant.
  • [23] Deutz (2021). DEUTZ TCG 7.8 Hydrogen – Hydrogen-combustion engine.
  • [24] Deutz (2024). DEUTZ joins consortium to develop hydrogen engines for off-highway applications.
  • [25] AVL (2021). TUPY, Westport Fuel Systems and AVL to Collaborate in Demonstration of World's Most Efficient Hydrogen-Fueled Internal Combustion Engine.
  • [26] WSF (2022). Westport and Scania Announce Impressive Test Results of H2 HPDI™ Fuel System for Heavy-Duty Transport.
  • [27] JCB (2024). Previewing the JCB hydrogen generator.
  • [28] Kawasaki (2024). World's First Public Demonstration Run of a Hydrogen Engine Motorcycle by a Mass-Production Motorcycle Manufacturer.
  • [29] Miller, B. A., Shipley, R. J., Parrington, R. J., and Dennies, D. P. (2002). ASM Materials Handbook, Metals Handbook, 10th Edition, Volume 11, Failure Analysis and Prevention, ASM International, Ohio.
  • [30] Carter, T. J., and Cornish, L. A. Hydrogen in Metals, Engineering Failure Analysis, Vol. 8, No. 2, 2001, pp. 113-121.
  • [31] Louthan, M. R. (2008). Hydrogen embrittlement of metals: a primer for the failure analyst. Journal of Failure Analysis and Prevention, 8, 289-307.
  • [32] Whiteman, M. B., & Troiano, A. R. (1965). Hydrogen embrittlement of austenitic stainless steel. Corrosion, 21(2), 53-56.
  • [33] Nouri, A., & Wen, C. (2021). Stainless steels in orthopedics. Structural biomaterials (pp. 67-101). Woodhead Publishing.
  • [34] Fashu, S., & Trabadelo, V. (2023). A critical review on development, performance and selection of stainless steels and nickel alloys for the wet phosphoric acid process. Materials & Design, 227, 111739.
  • [35] Hsu, K. L., Ahn, T. M., & Rigney, D. A. (1980). Friction, wear and microstructure of unlubricated austenitic stainless steels. Wear, 60(1), 13-37.
  • [36] Gallego, J. D., Malo, I., López, I., Gonzalez, C. D., & de Yebes, O. (2015). Thermal Conductivity and Electrical Loss of Thin Wall millimeter wave stainless steel waveguides. IT-CDT 2015-14, Observatorio de Yebes Guadalajara.
  • [37] Ban, H., & Shi, G. (2018). A review of research on high-strength steel structures. Proceedings of the Institution of Civil Engineers-Structures and Buildings, 171(8), 625-641.
  • [38] Pradhan, A., Vishwakarma, M., & Dwivedi, S. K. (2020). A review: The impact of hydrogen embrittlement on the fatigue strength of high strength steel. Materials Today: Proceedings, 26, 3015-3019.
  • [39] Guesser, W. L. (2009). Propriedades mecânicas dos ferros fundidos. Editora Blucher.
  • [40] Angus, H. T. (2013). Cast iron: physical and engineering properties. Elsevier.
  • [41] Wu, R., Ahlström, J., Magnusson, H., Frisk, K., Martinsson, A., & Kimab, S. (2015). Charging, degassingAEA – Brazilian Society of Automotive Engineering - SIMEA 20258 and distribution of hydrogen in cast iron. Stockholm: Svensk kärnbränslehantering (SKB).
  • [42] Lee, S. M., Park, I. J., Jung, J. G., & Lee, Y. K. (2016). The effect of Si on hydrogen embrittlement of Fe-18Mn-0.6 C-xSi twinning-induced plasticity steels. Acta Materialia, 103, 264-272.
  • [43] Ke, N., Huang, H., Wang, F., Dong, B., Huang, A., Hao, L., & Xu, X. (2023). Study on the hydrogen barrier performance of the SiOC coating. International Journal of Hydrogen Energy, 48(22), 8286-8295.
  • [44] Petrova, E. F., Rogov, A. I., Kozlenkov, E. M., & Shvartsman, L. A. (1988). Effect of silicon on the resistance of steel to hydrogen cracking. Prot. Met. (Engl. Transl.); 23(6).
  • [45] Elboujdaini, M., & Hay, M. G. (2018). Review of the effect of hydrogen on mechanical properties of low strength steels in oil and gas applications. Strength, Fracture and Complexity, 11(2-3), 169-184.
  • [46] Azevedo, C. R. (2007). Failure analysis of a crude oil pipeline. Engineering Failure Analysis, 14(6), 978-994.
  • [47] Sahiluoma, P., Yagodzinskyy, Y., Forsström, A., Hänninen, H., & Bossuyt, S. (2021). Hydrogen embrittlement of nodular cast iron. Materials and Corrosion, 72(1-2), 245-254.
  • [48] Goyal, H., Jones, P., Bajwa, A., Parsons, D., Akehurst, S., Davy, M. H., ... & Esposito, S. (2024). Design trends and challenges in hydrogen direct injection (H2DI) internal combustion engines – A review. International Journal of Hydrogen Energy, 86, 1179-1194.
  • [49] Pressouyre, G. M. (1980). Trap theory of hydrogen embrittlement. Acta Metallurgica, 28(7), 895-911.
  • [50] Hagi, H., Hayashi, Y., & Ohtani, N. (1979). Diffusion coefficient of hydrogen in pure iron between 230 and 300 K. Transactions of the Japan Institute of Metals, 20(7), 349-357.
  • [51] Choo, W. Y., & Lee, J. Y. (1982). Thermal analysis of trapped hydrogen in pure iron. Metallurgical Transactions A, 13, 135-140.
  • [52] Oger, L., Malard, B., Odemer, G., Peguet, L., & Blanc, C. (2019). Influence of dislocations on hydrogen diffusion and trapping in an Al-Zn-Mg aluminium alloy. Materials & Design, 180, 107901.
  • [53] Cho, S., Kim, G. I., Ko, S. J., Yoo, J. S., Jung, Y. S., Yoo, Y. H., & Kim, J. G. (2022). Comparison of hydrogen embrittlement susceptibility of different types of advanced high-strength steels. Materials, 15(9), 3406.
  • [54] Roth, J., Scherzer, B. M. U., Blewer, R. S., Brice, D. K., Picraux, S. T., & Wampler, W. R. (1980). Trapping, detrapping and replacement of keV hydrogen implanted into graphite. Journal of Nuclear Materials, 93, 601-607.
  • [55] Kanashenko, S. L., Gorodetsky, A. E., Chernikov, V. N., Markin, A. V., Zakharov, A. P., Doyle, B. L., & Wampler, W. R. (1996). Hydrogen adsorption on and solubility in graphites. Journal of nuclear materials, 233, 1207-1212.
  • [56] Turola, J., Obara, R. B., Ferrarese, A., Albaneze, A. F., & de Souza Cabezas, C. (2024). Microstructure of cast iron resistant to hydrogen embrittlement (No. 2023-36-0063). SAE Technical Paper.
  • [57] Takai, K. I., Chiba, Y., Noguchi, K., & Nozue, A. (2002). Visualization of the hydrogen desorption process from ferrite, pearlite, and graphite by secondary ion mass spectrometry. Metallurgical and Materials Transactions A, 33, 2659-2665.
  • [58] Yoshimoto, T., Matsuo, T., & Ikeda, T. (2019). The effect of graphite size on hydrogen absorption and tensile properties of ferritic ductile cast iron. Procedia Structural Integrity, 14, 18-25.
  • [59] Chicet, D. L., & Cojocaru-Filipiuc, V. (2014). Silicon influence on the cast iron structure. Applied Mechanics and Materials, 659, 46-50.
  • [60] ISO 6892-1 (2009). Metallic Materials – Tensile testing – Part 1: Method of test at room temperature 2009:70
  • [61] ASTM E23 (2024). Standard Test Methods for Notched Bar Impact Testing of Metallic Materials.
  • [62] Lee, J., Lee, T., Mun, D. J., Bae, C. M., & Lee, C. S. (2019). Comparative study on the effects of Cr, V, and Mo carbides for hydrogen-embrittlement resistance of tempered martensitic steel. Scientific Reports, 9(1), 5219.
Como citar:

OBARA, Rafael Brisolla; VOIGT, Anna Louise; FERRARESE, Andre; CABEZAS, Carlos de Souza; FANTIN, Luiza de Brito; FERREIRA, Marcelo Moreira; MOREIRA, Anna Ramus; CHAVES, Luís Fernando Fiuza; "Motores a Hidrogênio de Alta Durabilidade: Um Estudo Comparativo entre Ferros Fundidos e Aços", p. 264-271 . In: Anais do XXXII Simpósio Internacional de Engenharia. São Paulo: Blucher, 2025.
ISSN 2357-7592, DOI 10.5151/simea2025-PAP56

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações