Artigo completo - Open Access.

Idioma principal | Segundo idioma

Miller cycle and wet ethanol injection for high efficiency and low NOx emissions on a HD diesel engine

Miller cycle and wet ethanol injection for high efficiency and low NOx emissions on a HD diesel engine

Pedrozo, Vinicius Bernardes ; Lanzanova, Thompson Diórdinis Metzka ; Zhao, Hua ; Ferreira, Lincoln Prado ;

Artigo completo:

Costly aftertreatment systems and advanced technologies have been introduced to heavy-duty (HD) diesel engines in order to meet stringent emissions and fuel efficiency regulations. To overcome a trade-off between engine-out emissions and total fluid consu

Artigo completo:

Costly aftertreatment systems and advanced technologies have been introduced to heavy-duty (HD) diesel engines in order to meet stringent emissions and fuel efficiency regulations. To overcome a trade-off between engine-out emissions and total fluid consu

Palavras-chave: -,

Palavras-chave: -,

DOI: 10.5151/simea2021-PAP89

Referências bibliográficas
  • [1] Reitz RD. Directions in internal combustion engine research. Combust Flame 2013;160:1–8.
  • [2] doi:10.1016/j.combustflame.20111.00
  • [3] [2] Dec JE. A conceptual model of DI diesel combustion based on laser sheet imaging. SAE
  • [4] Tech Pap 1997. doi:10.4271/970873.
  • [5] [3] Conselho Nacional do Meio Ambiente - CONAMA. Resolução No 490, de 16 de Novebro de 2018. Diário Of Da União 2018;223:153.
  • [6] [4] Miller J, Posada F. Brazil PROCONVE P-8 emission standards. ICCT Policy Updat 2019.
  • [7] [5] Conselho Nacional do Meio Ambiente - CONAMA. Resolução No 403, de 11 de Novebro
  • [8] de 200 Diário Of Da União 2008;220:92.
  • [9] [6] Posada F, Chambliss S, Blumberg K. Costs of emission reduction technologies for heavy-duty
  • [10] diesel vehicles. ICCT White Pap 2016.
  • [11] [7] Pedrozo VB, May I, Dalla Nora M, Cairns A, Zhao H. Experimental analysis of ethanol dual-fuel combustion in a heavy-duty diesel engine: An optimisation at low load. Appl Energy
  • [12] 2016;165:166–82.doi:10.1016/j.apenergy.2015.052.
  • [13] [8] Liu J, Wang H, Zheng Z, Zou Z, Yao M. Effects of Different Turbocharging Systems on Performance in a HD Diesel Engine with Different Emission Control Technical Routes. SAE Tech Pap 2016. doi:10.4271/2016-01-2185.
  • [14] [9] Dallmann T, Menon A. Technology Pathways for Diesel Engines Used in Non-Road Vehicles and
  • [15] Equipment. ICCT White Pap 2016.
  • [16] [10] Görsmann C. Improving air quality while reducing the emission of greenhouse gases. Johnson Matthey Technol Rev 2015;59:139–51.doi:10.1595/205651315X687524.
  • [17] [11] Delgado O, Lutsey N. The U.S. SuperTruck Program: Expediting the development of advanced
  • [18] heavy-duty vehicle efficiency technologies. ICCT White Pap 2014.
  • [19] [12] Charlton S, Dollmeyer T, Grana T. Meeting the US Heavy-Duty EPA 2010 Standards and Providing Increased Value for the Customer. SAE Int J Commer Veh 2010;3. doi:10.4271/2010-01-1934.
  • [20] [13] Johnson T V. Diesel Emissions in Review. SAE Int J Engines 2011;4. doi:10.4271/2011-01-0304.
  • [21] [14] Stanton DW. Systematic Development of Highly Efficient and Clean Engines to Meet Future
  • [22] Commercial Vehicle Greenhouse Gas Regulations. SAE Int J Engines 2013;6. doi:10.4271/2013-01-
  • [23] 2421.
  • [24] [15] Imtenan S, Varman M, Masjuki HH, Kalam M a., Sajjad H, Arbab MI, et al. Impact of low
  • [25] temperature combustion attaining strategies on diesel engine emissions for diesel and biodiesels: A review. Energy Convers Manag 2014;80. doi:10.1016/j.enconman.2014.01.020.
  • [26] [16] Reitz RD, Duraisamy G. Review of high efficiency and clean reactivity controlled compression ignition (RCCI) combustion in internal combustion engines. Prog Energy Combust Sci 2015;46:12–71. doi:10.1016/j.pecs.2014.05.003.
  • [27] [17] Pedrozo VB, May I, Zhao H. Exploring the midload potential of ethanol-diesel dual-fuel
  • [28] combustion with and without EGR. Appl Energy 2017;193:263–5. oi:10.1016/j.apenergy.2017.02.043.
  • [29] [18] Pedrozo VB, May I, Guan W, Zhao H. High efficiency ethanol-diesel dual-fuel combustion: A
  • [30] comparison against conventional diesel combustion from low to full engine load. Fuel 2018;230:440–51. doi:10.1016/j.fuel.2018.05.034.
  • [31] [19] May I, Pedrozo V, Zhao H, Cairns A, Whelan S,Wong H, et al. Characterization and Potential of Premixed Dual-Fuel Combustion in a Heavy Duty Natural Gas/Diesel Engine. SAE Tech Pap 2016.
  • [32] doi:10.4271/2016-01-0790.
  • [33] [20] Goldsworthy L. Fumigation of a heavy duty common rail marine diesel engine with ethanolwater mixtures. Exp Therm Fluid Sci 2013;47:48–59. Doi:10.1016/j.expthermflusci.2012.12.018.
  • [34] [21] Benajes J, García A, Monsalve-Serrano J, Balloul I,Pradel G. An assessment of the dual-mode reactivity controlled compression ignition/conventional diesel combustion capabilities
  • [35] in a EURO VI medium-duty diesel engine fueled with an intermediate ethanol-gasoline blend and
  • [36] biodiesel. Energy Convers Manag 2016;123:381– 91. doi:10.1016/j.enconman.2016.06.059.[22] Pedrozo VB, Zhao H. Improvement in high load ethanol-diesel dual-fuel combustion by Miller cycle and charge air cooling. Appl Energy 2018;210:138– 51. doi:10.1016/j.apenergy.2017.10.092.
  • [37] [23] Guan W, Wang X, Zhao H, Liu H. Exploring the high load potential of diesel–methanol dual-fuel operation with Miller cycle, exhaust gas recirculation, and intake air cooling on a heavyduty diesel engine. Int J Engine Res 2020. doi:10.1177/1468087420926775.
  • [38] [24] Martins MES, Lanzanova TDM. Full-load Miller cycle with ethanol and EGR: Potential benefits and challenges. Appl Therm Eng 2015;90:274–85.doi:10.1016/j.applthermaleng.2015.06.086.
  • [39] [25] He X, Durrett RP, Sun Z. Late Intake Valve Closing as an Emissions Control Strategy at Tier 2 Bin 5 Engine-Out NOx Level. SAE Int J Engines 2008;1:2008-01–0637. doi:10.4271/2008-01-0637.
  • [40] [26] Benajes J, Molina S, Martín J, Novella R. Effect of advancing the closing angle of the intake valves on diffusion-controlled combustion in a HD diesel engine. Appl Therm Eng 2009;29:1947–54. doi:10.1016/j.applthermaleng.2008.09.014.
  • [41] [27] Pedrozo VB, Lanzanova TDM, Zhao H. The effects of wet ethanol injection and Miller cycle on a heavy-duty diesel engine operating at full load. Intern Combust Engines Conf 2017 - IMechE 2017.
  • [42] [28] Sjöberg M, Dec JE. Effects of EGR and its constituents on HCCI autoignition of ethanol. Proc Combust Inst 2011;33:3031–8. doi:10.1016/j.proci.2010.06.043.
  • [43] [29] Zhao H. HCCI and CAI engines for automotive industry. Cambridge: Woodhead Publishing
  • [44] Limited; 2007.
  • [45] [30] Dempsey AB, Das Adhikary B, Viswanathan S, Reitz RD. Reactivity Controlled Compression
  • [46] Ignition Using Premixed Hydrated Ethanol and Direct Injection Diesel. J Eng Gas Turbines Power
  • [47] 2012;134:082806-082806–11. doi:10.1115/1.4006703.
  • [48] [31] Christensen M, Johansson B. Homogeneous Charge Compression Ignition with Water Injection. SAE Tech Pap 1999. doi:10.4271/1999-01-0182.
  • [49] [32] Brewster S, Railton D, Maisey M, Frew R. The Effect of E100 Water Content on High Load
  • [50] Performance of a Spray Guide Direct Injection Boosted Engine. SAE Tech Pap 2007.
  • [51] doi:10.4271/2007-01-2648.
  • [52] [33] Flowers DL, Aceves SM, Frias JM. Improving Ethanol Life Cycle Energy Efficiency by Direct
  • [53] Utilization of Wet Ethanol in HCCI Engines. SAE Tech Pap 2007;01. doi:10.4271/2007-01-1867.
  • [54] [34] Lanzanova TDM, Dalla Nora M, Zhao H. Performance and economic analysis of a direct
  • [55] injection spark ignition engine fueled with wet ethanol. Appl Energy 2016;169:230–9.
  • [56] doi:10.1016/j.apenergy.2016.02.016.
  • [57] [35] Lanzanova TDM, Dalla Nora M, Martins MES, Machado PRM, Pedrozo VB, Zhao H. The effects
  • [58] of residual gas trapping on part load performance and emissions of a spark ignition direct injection engine fuelled with wet ethanol. Appl Energy 2019;253:113508.
  • [59] doi:10.1016/j.apenergy.2019.113508.
  • [60] [36] Saffy H a, Northrop WF, Kittelson DB, Boies AM. Energy, carbon dioxide and water use implications of hydrous ethanol production. Energy Convers Manag 2015;105:900–7.
  • [61] doi:10.1016/j.enconman.2015.08.039.
  • [62] [37] López-Plaza EL, Hernández S, Barroso-Muñoz FO, Segovia-Hernández JG, Aceves SM, Martínez-Frías J, et al. Experimental and Theoretical Study of the Energy Savings from Wet Ethanol Production and Utilization. Energy Technol 2014;2:440–5. doi:10.1002/ente.201300180.
  • [63] [38] Schwoerer J, Kumar K, Ruggiero B, Swanbon B. Lost-Motion VVA Systems for Enabling Next
  • [64] Generation Diesel Engine Efficiency and After-Treatment Optimization. SAE Tech Pap 2010.
  • [65] doi:10.4271/2010-01-1189.
  • [66] [39] Wallner T. Correlation Between Speciated Hydrocarbon Emissions and Flame Ionization
  • [67] Detector Response for Gasoline/Alcohol Blends. J Eng Gas Turbines Power 2011;133.
  • [68] doi:10.1115/1.4002893.
  • [69] [40] Pedrozo VB, May I, Lanzanova TDM, Zhao H. Potential of internal EGR and throttled operation for low load extension of ethanol–diesel dual-fuel reactivity controlled compression ignition combustion on a heavy-duty engine. Fuel 2016;179:391–405. Doi:10.1016/j.fuel.2016.03.090.
  • [70] [41] Heywood JB. Internal Combustion Engines Fundamentals 2E. 2nd Editio. McGraw-Hill
  • [71] Education; 2018.
  • [72] [42] International Organisation of Legal Metrology (IOLM). International Recommendation No22 -
  • [73] Alcoholometry. First Ed. Paris: 19
  • [74] [43] Ickes A, Hanson R, Wallner T. Impact of Effective Compression Ratio on Gasoline-Diesel Dual-Fuel Combustion in a Heavy-Duty Engine Using Variable Valve Actuation. SAE Tech Pap 2015.
  • [75] doi:10.4271/2015-01-1796.
  • [76] [44] Kokjohn SL, Hanson RM, Splitter D a, Reitz RD. Fuel reactivity controlled compression ignition (RCCI): a pathway to controlled high-efficiency clean combustion. Int J Engine Res 2011;12:209– 26. doi:10.1177/1468087411401548.
  • [77] [45] Pedrozo VB. An experimental study of ethanoldiesel dual-fuel combustion for high efficiency and clean heavy-duty engines. Brunel University London, 2017.
  • [78] [46] Zhao H. Advanced direct injection combustion engine technologies and development - Volume 2: Diesel engines. Cambridge: Woodhead Publishing Limited; 2010.
  • [79] [47] Schaefer M, Hofmann L, Girot P, Rohe R. Investigation of NOx- and PM-reduction by a
  • [80] Combination of SCR-catalyst and Diesel Particulate Filter for Heavy-duty Diesel Engine. SAE Int J Fuels Lubr 2009;2. doi:10.4271/2009-01-0912.
  • [81] [48] Johansen K, Widd A, Truck M a N, Ag B. Passive NO2 Regeneration and NOx Conversion for DPF
  • [82] with an Integrated Vanadium SCR Catalyst. SAE Tech Pap 2016. doi:10.4271/2016-01-0915.
  • [83] [49] Hanson R, Ickes A, Wallner T. Comparison of RCCI Operation with and without EGR over the
  • [84] Full Operating Map of a Heavy-Duty Diesel Engine. SAE Tech Pap 2016. doi:10.4271/2016-01-
  • [85] 0794.
  • [86] [50] INMETRO. Portaria No 389, de 06 de agosto de 2013.
  • [87] [51] Agência Nacional de Petróleo Gás Natural e Biocombustíveis. Série histórica do levantamento de preços e de margens de comercialização de combustíveis. ANP 2020.
  • [88] http://www.anp.gov.br/precos-e-defesa-daconcorrencia/precos/levantamento-de-precos/seriehistorica-do-levantamento-de-precos-e-de-margensde-comercializacao-de-combustiveis (accessed May 17, 2020).
  • [89] [52] ANP. Administrative Act ANP No. 19. 2015
Como citar:

Pedrozo, Vinicius Bernardes; Lanzanova, Thompson Diórdinis Metzka; Zhao, Hua; Ferreira, Lincoln Prado; "Miller cycle and wet ethanol injection for high efficiency and low NOx emissions on a HD diesel engine", p. 407-420 . In: Anais do XXVIII SIMPÓSIO INTERNACIONAL DE ENGENHARIA AUTOMOTIVA. São Paulo: Blucher, 2021.
ISSN 2357-7592, DOI 10.5151/simea2021-PAP89

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações