Conference full papers - Open Access.

Idioma principal

Methodology of Implementing Transformative Bioactive Hybrids in Built Environment to Achieve Sustainability

Methodology of Implementing Transformative Bioactive Hybrids in Built Environment to Achieve Sustainability

Abdallah, Yomna K.; Estevez, Alberto T.;

Conference full papers:

Discrete responsive systems lack functional autonomous transformation, in response to environmental conditions and users' demands; due to shortage in direct integration of biological intelligence. Bioactive hybrids are sufficient solutions as they perform independente self-replication, differentiation of cellular structure, active metabolism, spatial propagation, adaptation, transformation, and morphogenesis. In this paper, a methodology is proposed for the design, fabrication and implementation of these hybrids in the built environment; highlighting their sustainability potentials, by merging synthetic biology, bioengineering and bioprinting, to achieve multiscale active responsiveness. The current work is part of research in biosynthesizing fibroblasts as transformative material in architectural sustainability.

Conference full papers:

Palavras-chave: Transformative hybrids, Biodigital, Bioprinting, Robotic materials, Bioengineered systems,


DOI: 10.5151/sigradi2020-129

Referências bibliográficas
  • [1] Ali, Z., Kouzani, A. Z., Khoo, S. Y., Nasri-Nasrabadi, B., Kaynak, A. (2017). Development and analysis of a 3D printed hydrogel soft actuator, Sensors and Actuators A: Physical.
  • [2] Ali, Z., Kouzani, A. Z., Khoo, S. Y., Gibson, I., Kaynak, A. (2016). 3D printed hydrogel soft actuators, Region 10 Conference (TENCON), IEEE, 2272–2277.
  • [3] Alon, U. (2007). Network motifs: theory and experimental approaches, Nat. Rev. Genet, 8, 450–461.
  • [4] Auger, F. A., Gibot, L., Lacroix, D. (2013). The Pivotal Role of Vascularization in Tissue Engineering, Annual Review of Biomedical Engineering, 15, 177–200.
  • [5] Augst, A. D., Kong Hyun, J., Mooney, D. J. (2006). Alginate Hydrogels as Biomaterials, Macromolecular Bioscience, 6(8), 623–33.
  • [6] Axpe, E., Oyen, M. L. (2016). Applications of Alginate-Based Bioinks in 3D Bioprinting, International Journal of Molecular Sciences, 17(12), 197
  • [7] Bajaj, P., Schweller, R. M., Khademhosseini, A., West, J. L., Bashir, R. (2014). 3D Biofabrication Strategies for Tissue Engineering and Regenerative Medicine, Annual Review of Biomedical Engineering, 16, 247–76, 2014.
  • [8] Bodanis, D. (2009). E=mc^2: A Biography of the World's Most Famous Equation (illustrated ed.). Bloomsbury Publishing.
  • [9] Bonneau, R., Facciotti, M. T., Reiss, D. J., Schmid, A. K., Pan,
  • [10] M. Kaur, A. (2007). A predictive model for transcriptional control of physiology in a free-living cell, Cell, 131, 1354–1365.
  • [11] Carrera, J., Elena, S. F., Jaramillo, A., (2012). Computational design of genomic transcriptional networks with adaptation to varying environments, Proc. Natl. Acad. Sci.
  • [12] Chua, C. K., Yeong, W. Y. (2016). Bioprinting: Principles and Applications, Singapore: World Scientific Publishing Co, 296.
  • [13] Cooper-White, M. (2016). How 3D Printing Could End The Deadly Shortage Of Donor Organs, Huffpost Science,, Inc.
  • [14] Cruz, B.M., Pike, S. (2008). Neoplasmatic design. Architecture Studies, 76, 6–7.
  • [15] Csete, M. E., Doyle, J. C. (2002). Reverse engineering of biological complexity, Science, 295, 1664–1669.
  • [16] Hamada, S., Yancey, K. G., Pardo, Y., Gan, M., Vanatta, M., An, D., Hu, Y., Derrien, T. L., Ruiz, R., Liu, P., Sabin, J., Luo,
  • [17] D. (2019). Dynamic DNA material with emergent locomotion behavior powered by artificial metabolism, Science Robotics.
  • [18] Harmon, K. (2013). A sweet solution for replacing organs, Scientific American, 308(4), 54–55.
  • [19] Hayden, E.C. (2014). Synthetic-biology firms shift focus, Nature, 7485 (505), 598.
  • [20] He, F., Fromion, V., Westerhoff, H. V. (2013). (Im)Perfect robustness and adaptation of metabolic networks subject to metabolic and gene-expression regulation: marrying control engineering with metabolic control analysis, BMC Syst. Biol, 7, 131.
  • [21] Hensel, M. (2006). (Synthetic) life architectures: ramifications and potentials of a literal biological paradigm for architectural design, Architecture Studies, 76, 18–25.
  • [22] Hinton, T. J., Jallerat, Q., Palchesko, R. N., Park, J. H., Grodzicki, M. S., Shue, H. J., Ramadan, M. H., Hudson, A. R., Feinberg, A. W. (2015). Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels, Science Advances, 1(9).
  • [23] Hockaday, L. A., Kang, K. H., Colangelo, N. W., Cheung, P. Y. C., Duan, B., Malone, E., Wu, J., Girardi, L.N., Bonassar, L. J.,
  • [24] Lipson, H., Chu, C. C., Butcher, J. T. (2012). Rapid 3D printing of anatomically accurate and mechanically.
  • [25] Ji, S., Guvendiren, M. (2017). Recent Advances in Bioink Design for 3D Bioprinting of Tissues and Organs-Front. Bioeng. Biotechnol.
  • [26] Kashtan, N., Itzkovitz, S., Milo, R., Alon, U. (2004). Topological generalizations of network motifs, Phys. Rev. E Stat. Nonlin. Soft Matter Phys, 70.
  • [27] Kriegman, S., Blackiston, D., Levin, M., Bongard, J. (2020). A scalable pipeline for designing reconfigurable organisms, PNAS, 117(4), 1853-1859.
  • [28] McGregor, S., Vasas, V., Husbands, P., Fernando, C. (2012). Evolution of associative learning in chemical networks, PLoS Comput. Biol.
  • [29] Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D. Alon, U. (2002). Network motifs: simple building blocks of complex networks, Science, 298, 824–827.
  • [30] Murphy, S., Atala, A. (2014). 3D bioprinting of tissues and organs, Nature Biotechnology, 32, 773–85.
  • [31] Nakano, T. (2013). Molecular Communication, Cambridge.
  • [32] Robertson, M.D., Figueroa, C. R., Zhang, M. (2015). Material ecologies for synthetic biology: Bio mineralization and the state space of design, Computer-Aided Design journal, 60, 28-39.
  • [33] Samad, H., Goff, J. P., Khammash, M. (2002). Calcium homeostasis and parturient hypocalcemia: an integral feedback perspective, J. Theor. Biol, 214, 17–29.
  • [34] Schweitzer, F. (2007). Active Brownian Particles: Artificial Agents in Physics, Stochastic Dynamics, 358-371.
  • [35] Shafiee, A., Atala, A. (2016). Printing Technologies for Medical Applications, Trends in Molecular Medicine, 22 (3), 254–265.
  • [36] Singh, D. Thomas, D. (2018). Advances in medical polymer technology towards the panacea of complex 3D tissue and organ manufacture, American Journal of Surgery.
  • [37] Thomas, D., Singh, D. (2018). Novel techniques of engineering 3D vasculature tissue for surgical procedures, The American Journal of Surgery.
  • [38] Thomas, D. J. (2016). Could 3D bioprinted tissues offer future hope for microtia treatment?, International Journal of Surgery, 32, 43–44.
  • [39] Van Heeswijk, W. C., Westerhoff, H. V., Boogerd, F. C. (2013). Nitrogen assimilation in Escherichia coli: putting molecular data into a systems perspective, Microbiol. Mol. Biol. Rev, 77, 628–695.
  • [40] Wellhausen, R., Oye, K. A. (2007). Intellectual Property and the Commons in Synthetic Biology: Strategies to Facilitate an Emerging Te, W97 binnenwerk-8, Rathenau Constructing Life, IEEE, Atlanta Conference on Science, Technology and Innovation Policy.
  • [41] Westerhoff, H. V., Brooks, A. N., Simeonidis, E., García- Contreras, R., He, F., Boogerd, F. C., Jackson, V. J., Goncharuk, V., Kolodkin, A. (2014). Macromolecular networks and intelligence in microorganisms, Front Microbiol, 5, 379.
  • [42] Yoo, J., Atala, A. (2015). Bioprinting: 3D printing comes to life, Manufacturing Engineering.
  • [43] "Biolistic Transformation- an overview, ScienceDirect Topics". Retrieved 2020-04-03.
  • [44]
  • [45] heterogeneous aortic valve hydrogel scaffolds, Biofabrication, 4(3).
  • [46] 1/30/2018.
  • [47]
Como citar:

Abdallah, Yomna K.; Estevez, Alberto T.; "Methodology of Implementing Transformative Bioactive Hybrids in Built Environment to Achieve Sustainability", p. 953-961 . In: Congreso SIGraDi 2020. São Paulo: Blucher, 2020.
ISSN 2318-6968, DOI 10.5151/sigradi2020-129

últimos 30 dias | último ano | desde a publicação