Julho 2025 vol. 11 num. 1 - XV Encontro Científico de Física Aplicada
Artigo - Open Access.
Mecânica Estatística e Redes Complexas
Statistical Mechanics and Networks Complexities
Santos, Tarcis Alvan oliva dos ; HOFFMANN, ELISANGELA ;
Artigo:
Artigo:
Palavras-chave: Redes Complexas, Mecânica Estatística, Climatologia,
Palavras-chave: Complex Networks, Statistical Mechanics, Climatology,
DOI: 10.5151/xvecfa-2025021
Referências bibliográficas
- [1] ALBERT, R.; BARABÁSI, A-L. Statistical mechanics of complex networks. *Reviews of Modern Physics*, v. 74, n. 1, p. 47-97, 2002. [https://doi.org/10.1103/RevModPhys.74.47](https://doi.org/10.1103/RevModPhys.74.47)
- [2] DOROGOVTSEV, S. N.; MENDES, J. F. F. *Evolution of Networks: From Biological Nets to the Internet and WWW*. Oxford University Press, 2003. [https://doi.org/10.1093/acprof\:oso/9780198515906.001.0001](https://doi.org/10.1093/acprof:oso/9780198515906.001.0001)
- [3] ERDŐS, P.; RÉNYI, A. On the evolution of random graphs. *Publication of the Mathematical Institute of the Hungarian Academy of Sciences*, v. 5, p. 17-60, 1959. [https://static.actevity.hu/\~p\_erdos/1960.pdf](https://static.actevity.hu/~p_erdos/1960.pdf)
- [4] BORNMMAN, L. Do altmetrics point to the broader impact of research? An overview of benefits and disadvantages of altmetrics. *Journal of informetrics*, v. 8, n. 4, p. 895-903, 201 [https://doi.org/10.1016/j.joi.20109.005](https://doi.org/10.1016/j.joi.20109.005)
- [5] KRIKOUV, D.; PAPADOPOULOS, F.; KITSÁK, M.; VAHDAT, A.; BOGUÑA, M. Hyperbolic geometry of complex networks. *Physical Review E—Statistical, Nonlinear, and Soft Matter Physics*, v. 82, n. 3, p. 036106, 2010. [https://doi.org/10.1103/PhysRevE.82.036106](https://doi.org/10.1103/PhysRevE.82.036106)
- [6] SORRENTINO, F.; DI BERNARDO, M.; GAROFALO, F.; CHEN, G. Controllability of complex networks via pinning. *Physical Review E—Statistical, Nonlinear, and Soft Matter Physics*, v. 75, n. 4, p. 046103, 2007. [https://doi.org/10.1103/PhysRevE.75.046103](https://doi.org/10.1103/PhysRevE.75.046103)
- [7] BRAHA, D.; BAR-YAM, Y. The statistical mechanics of complex product development: Empirical and analytical results. *Management Science*, v. 53, n. 7, p. 1127-1145, 200 [https://doi.org/10.1287/mnsc.1060.0672](https://doi.org/10.1287/mnsc.1060.0672)
- [8] TOVONEN, R.; ONNELA, J. P.; SARAMÄKI, J.; HYVONEN, J.; KASKI, K. A model for social networks. *Physica A: Statistical Mechanics and Its Applications*, v. 371, n. 2, p. 851-860, 2006. [https://doi.org/10.1016/j.physa.2006.03.050](https://doi.org/10.1016/j.physa.2006.03.050)
- [9] GUILLAUME, J. L.; LATAPY, M. Bipartite structure of all complex networks. *Information Processing Letters*, v. 90, n. 5, p. 215-221, 2004. [https://hal.science/hal-00016855/document](https://hal.science/hal-00016855/document)
- [10] GUILLAUME, J. L.; LATAPY, M. Bipartite graphs as models of complex networks. In: *Workshop on Combinatorial and Algorithmic Aspects of Networking*, p. 127-139. [https://gephi.org/users/publications/2004-guillaume-latapy-bipartite.pdf](https://gephi.org/users/publications/2004-guillaume-latapy-bipartite.pdf)
- [11] GUMERA MANRIQUE, R.; ARENAS, A.; DIAZ GUILERA, A.; GIRALT, F. Dynamical properties of model communication networks. *Physical Review E*, v. 66, n. 2, p. 026704, 2002. [https://doi.org/10.1103/PhysRevE.66.026704](https://doi.org/10.1103/PhysRevE.66.026704)
- [12] ESTRADA, E.; HATANO, N. Statistical-mechanical approach to subgraph centrality in complex networks. *Chemical Physics Letters*, v. 439, n. 1-3, p. 247-251, 2007. [https://doi.org/10.1016/j.cplett.2007.03.089](https://doi.org/10.1016/j.cplett.2007.03.089)
- [13] SÁNCHEZ, A. D.; LÓPEZ, J. M.; RODRIGUEZ, M. A. Nonequilibrium phase transitions in directed small-world networks. *Physical Review Letters*, v. 88, n. 4, p. 048701, 2002. [https://doi.org/10.1103/PhysRevLett.88.048701](https://doi.org/10.1103/PhysRevLett.88.048701)
- [14] AO, P. Potential in noise driven differential equations: novel construction. *Journal of Physics A: Mathematical and General*, v. 37, n. 3, p. L25, 2004. [https://doi.org/10.1088/0305-4470/37/3/L01](https://doi.org/10.1088/0305-4470/37/3/L01)
- [15] ROZENFELD, H. D.; SONG, C.; MAKSE, H. A. Small-world to fractal transition in complex networks: a renormalization group approach. *Physical Review Letters*, v. 104, n. 2, p. 025701, 2010. [https://doi.org/10.1103/PhysRevLett.104.025701](https://doi.org/10.1103/PhysRevLett.104.025701)
- [16] CALLASTRA, L.; BARRAT, A.; BARTHÉLEMY, M.; VESPIGNANI, A. Vulnerability of weighted networks. *Journal of Statistical Mechanics: Theory and Experiment*, v. 2006, n. 04, P04006, 2006. [https://doi.org/10.1088/1742-5468/2006/04/P04006](https://doi.org/10.1088/1742-5468/2006/04/P04006)
- [17] HOLME, P.; SARAMÄKI, J. Temporal networks. *Physics Reports*, v. 519, n. 3, p. 97-125, 2012. [https://doi.org/10.1016/j.physrep.2012.03.001](https://doi.org/10.1016/j.physrep.2012.03.001)
- [18] DE DOMENICO, M. Multilayer modeling of complex networks. *Nature Reviews Physics*, v. 5, p. 340-321, 2023. [https://doi.org/10.48550/arXiv.1604.02021](https://doi.org/10.48550/arXiv.1604.02021)
Como citar:
Santos, Tarcis Alvan oliva dos; HOFFMANN, ELISANGELA; "Mecânica Estatística e Redes Complexas", p. 116-123 . In: Anais do XV Encontro Científico de Física Aplicada.
São Paulo: Blucher,
2025.
ISSN 2358-2359,
DOI 10.5151/xvecfa-2025021
últimos 30 dias | último ano | desde a publicação
downloads
visualizações
indexações