Trabalho completo - Open Access.

Idioma principal | Segundo idioma

Manufatura aditiva e a simulação computacional: uma revisão das tecnologias e aplicações integradas

Additive manufacturing and computer simulation: a review of integrated technologies and applications.

DOMINGUES, Wesley Vinícius ; ARCE, Rodrigo Pulido ; FROSE, Luciano Rafael Hansel ;

Trabalho completo:

Manufatura Aditiva (Additive manufacturing), ou impressão 3D, é um processo de fabricação baseado na construção de objetos camada por camada a partir de um modelo digital 3D. Esse processo permite a criação de peças complexas e personalizadas com precisão e redução de custos. Quando aliada à simulação computacional, técnica que permite a criação de modelos virtuais de sistemas físicos ou processos, é possível validar protótipos antes da produção e otimizar o desempenho dos produtos acelerando o desenvolvimento de novos componentes e melhorando a eficiência da produção. Com o objetivo de disseminar o conhecimento sobre AM e sua utilização conjunta com a simulação computacional para o desenvolvimento sustentável, o presente artigo contempla uma revisão bibliográfica das tecnologias de acordo com a norma ASTM/ISO 52900. São apresentadas as principais características e as suas principais aplicações além das capacidades dos softwares de simulação. O estudo identificou quais técnicas de AM são tendências na aplicação industrial e de que maneira estão sendo desenvolvidas e como em conjunto com a utilização de programas de simulação podem trazer benefícios no desenvolvimento da mobilidade sustentável, em virtude da otimização no uso de matéria-prima, gasto energético e do peso embarcado.

Trabalho completo:

Additive manufacturing (AM), or 3D printing, is a manufacturing process based on building objects layer by layer from a 3D digital model. This process allows the creation of complex and customized parts with precision and cost reduction. When combined with computational simulation, a technique that enables the creation of virtual models of physical systems or processes, it is possible to validate prototypes before production and optimize product performance, accelerating the development of new components and improving production efficiency. This article presents a literature review of technologies according to ASTM/ISO 52900 standards to disseminate knowledge about AM and its joint use with computational simulation for sustainable development. The main features and applications are presented, as well as the capabilities of simulation software. The study identified which AM techniques are trends in industrial applications and how they are being developed, and how, together with the use of simulation programs, they can bring benefits to the development of sustainable mobility due to the optimization of the use of raw materials, energy expenditure, and weight.

Palavras-chave: ,

Palavras-chave: ,

DOI: 10.5151/simea2023-PAP34

Referências bibliográficas
  • [1] " N. Volpato et al., Manufatura Aditiva: Tecnologias
  • [2] e aplicações da impressão 3D, 1st ed. São Paulo:
  • [3] Edgar Blucher Ltda., 2017.
  • [4] [2] A. Law and D. Kelton, Simulation Modeling and
  • [5] Analysis, 3rd ed. McGraw-Hill Science, 2000.
  • [6] [3] “ISO/TC 261 - Additive Manufacturing,”
  • [7] https://www.iso.org/committee/629086.html.
  • [8] International Organization for Standardization,
  • [9] 2011.
  • [10] [4] “ISO/ASTM 52900:2015 - Additive Manufacturing
  • [11] — General principles — Terminology.”
  • [12] International Organization for Standardization,
  • [13] 2015.
  • [14] [5] C. Protolabs, “HUBS - Additive Manufacturing
  • [15] Technologies,” https://www.hubs.com/get/amtechnologies/, 2023.
  • [16] [6] I. Gibson, D. Rosen, and B. Stucker, Additive
  • [17] manufacturing technologies: 3D printing, rapid
  • [18] prototyping, and direct digital manufacturing, 2nd
  • [19] ed. Springer New York, 2015. doi: 10.1007/978-1-
  • [20] 4939-2113-3.
  • [21] [7] “ISO 52915:2013 - Specification for Additive
  • [22] Manufacturing File Format (AMF).” International
  • [23] Organization for Standardization, 2013.
  • [24] [8] “AMS-AM-002 - Process Requirements for
  • [25] Production of Metal Powder Feedstock for Use in
  • [26] Additive Manufacturing of Aerospace Parts.” SAE
  • [27] International, 2019.
  • [28] [9] “ISO 13485:2016 - Medical devices — Quality
  • [29] management systems — Requirements for
  • [30] regulatory purposes.” International Organization for
  • [31] Standa, 2016.
  • [32] [10] “ISO 13485-7:202 - Additive manufacturing —
  • [33] Application in medical devices — Part 7: Guidance
  • [34] on the application of ISO 13485.” International
  • [35] Organization for Standardization, 2021.
  • [36] [11] “ISO 12836:2015 - Dentistry — Digitizing devices
  • [37] for CAD/CAM systems for indirect dental
  • [38] restorations — Test methods for assessing
  • [39] accuracy.” International Organization for
  • [40] Standardization, 2015.
  • [41] [12] C. Klahn, B. Leutenecker, and M. Meboldt, “Design
  • [42] strategies for the process of additive manufacturing,”
  • [43] in Procedia CIRP, Elsevier B.V., 2015, pp. 230–235.
  • [44] doi: 10.1016/j.procir.2015.01.082.
  • [45] [13] “Scopus Preview,”
  • [46] https://www.scopus.com/search/form.uri?display=b
  • [47] asic, 2023.
  • [48] [14] M. Anand and A. K. Das, “Issues in fabrication of
  • [49] 3D components through DMLS Technique: A
  • [50] review,” Optics and Laser Technology, vol. 139.
  • [51] Elsevier Ltd, Jul. 01, 2021. doi:
  • [52] 10.1016/j.optlastec.2021.106914.
  • [53] [15] A. Foroozmehr, M. Badrossamay, E. Foroozmehr,
  • [54] and S. Golabi, “Finite Element Simulation of
  • [55] Selective Laser Melting process considering Optical
  • [56] Penetration Depth of laser in powder bed,” Mater
  • [57] Des, vol. 89, pp. 255–263, Jan. 2016, doi:
  • [58] 10.1016/j.matdes.2015.10.002.
  • [59] [16] M. Jiménez, L. Romero, I. A. Domínguez, M. D. M.
  • [60] Espinosa, and M. Domínguez, “Additive
  • [61] Manufacturing Technologies: An Overview about
  • [62] 3D Printing Methods and Future Prospects,”
  • [63] Complexity, vol. 2019, 2019, doi:
  • [64] 10.1155/2019/9656938.
  • [65] [17] G. N. Levy, R. Schindel, and J. P. Kruth, “Rapid
  • [66] Manufacturing and Rapid Tooling with Layer
  • [67] Manufacturing (LM) Technologies, State of the Art
  • [68] and Future Perspectives.”
  • [69] [18] C. Lindemann, U. Jahnke, M. Moi, and R. Koch,
  • [70] “Analyzing Product Lifecycle Costs for a Better
  • [71] Understanding of Cost Drivers in Additive
  • [72] Manufacturing.”
  • [73] [19] E. Atzeni and A. Salmi, “Economics of additive
  • [74] manufacturing for end-usable metal parts,”
  • [75] International Journal of Advanced Manufacturing
  • [76] Technology, vol. 62, no. 9–12, pp. 1147–1155, Oct.
  • [77] 2012, doi: 10.1007/s00170-011-3878-1.
  • [78] [20] C. Achillas, D. Aidonis, E. Iakovou, M.
  • [79] Thymianidis, and D. Tzetzis, “A methodological
  • [80] framework for the inclusion of modern additive
  • [81] manufacturing into the production portfolio of a
  • [82] focused factory,” J Manuf Syst, vol. 37, pp. 328–339,
  • [83] Oct. 2015, doi: 10.1016/j.jmsy.2014.07.014.
  • [84] [21] B. P. Conner et al., “Making sense of 3-D printing:
  • [85] Creating a map of additive manufacturing products
  • [86] and services,” Addit Manuf, vol. 1, pp. 64–76, Oct.
  • [87] 2014, doi: 10.1016/j.addma.2014.08.005.
  • [88] [22] A. J. Pinkerton, “Lasers in additive manufacturing,”
  • [89] Opt Laser Technol, vol. 78, pp. 25–32, Apr. 2016,
  • [90] doi: 10.1016/j.optlastec.2015.09.025.
  • [91] [23] D. Herzog, V. Seyda, E. Wycisk, and C.
  • [92] Emmelmann, “Additive manufacturing of metals,”
  • [93] Acta Mater, vol. 117, pp. 371–392, Sep. 2016, doi:
  • [94] 10.1016/j.actamat.2016.07.019.
  • [95] [24] S. A. M. Tofail, E. P. Koumoulos, A.
  • [96] Bandyopadhyay, S. Bose, L. O’Donoghue, and C.
  • [97] Charitidis, “Additive manufacturing: scientific and
  • [98] technological challenges, market uptake and
  • [99] opportunities,” Materials Today, vol. 21, no. 1.
  • [100] Elsevier B.V., pp. 22–37, Jan. 01, 2018. doi:
  • [101] 10.1016/j.mattod.2017.07.001.
  • [102] [25] T. DebRoy et al., “Additive manufacturing of
  • [103] metallic components – Process, structure and
  • [104] properties,” Progress in Materials Science, vol. 92.
  • [105] Elsevier Ltd, pp. 112–224, Mar. 01, 2018. doi:
  • [106] 10.1016/j.pmatsci.2017.10.001.
  • [107] [26] W. E. Frazier, “Metal additive manufacturing: A
  • [108] review,” Journal of Materials Engineering and
  • [109] Performance, vol. 23, no. 6. Springer New York
  • [110] LLC, pp. 1917–1928, 2014. doi: 10.1007/s11665-
  • [111] 014-0958-z.
  • [112] [27] T. D. Ngo, A. Kashani, G. Imbalzano, K. T. Q.
  • [113] Nguyen, and D. Hui, “Additive manufacturing (3D
  • [114] printing): A review of materials, methods,
  • [115] applications and challenges,” Composites Part B:
  • [116] Engineering, vol. 143. Elsevier Ltd, pp. 172–196,
  • [117] Jun. 15, 2018. doi:
  • [118] 10.1016/j.compositesb.2018.02.012.
  • [119] [28] C. Körner, “Additive manufacturing of metallic
  • [120] components by selective electron beam melting - A
  • [121] review,” International Materials Reviews, vol. 61,
  • [122] no. 5. Taylor and Francis Ltd., pp. 361–377, 2016.
  • [123] doi: 10.1080/09506608.2016.1176289.
  • [124] [29] L. Thijs, F. Verhaeghe, T. Craeghs, J. Van
  • [125] Humbeeck, and J. P. Kruth, “A study of the
  • [126] microstructural evolution during selective laser
  • [127] melting of Ti-6Al-4V,” Acta Mater, vol. 58, no. 9,
  • [128] pp. 3303–3312, May 2010, doi:
  • [129] 10.1016/j.actamat.2010.02.004.
  • [130] [30] J. P. Kruth, P. Mercelis, J. Van Vaerenbergh, L.
  • [131] Froyen, and M. Rombouts, “Binding mechanisms in
  • [132] selective laser sintering and selective laser melting,”
  • [133] Rapid Prototyping Journal, vol. 11, no. 1. pp. 26–36,
  • [134] 2005. doi: 10.1108/13552540510573365.
  • [135] [31] A. Saboori, A. Aversa, G. Marchese, S. Biamino, M.
  • [136] Lombardi, and P. Fino, “Application of directed
  • [137] energy deposition-based additive manufacturing in
  • [138] repair,” Applied Sciences (Switzerland), vol. 9, no.
  • [139] 16. MDPI AG, Aug. 01, 2019. doi:
  • [140] 10.3390/app9163316.
  • [141] [32] H. Miyanaji, “Binder jetting additive manufacturing
  • [142] process fundamentals and the resultant influences on
  • [143] part quality,” University of Louisville, 2018. doi:
  • [144] 10.18297/etd/3058.
  • [145] [33] S. C. Ligon, R. Liska, J. Stampfl, M. Gurr, and R.
  • [146] Mülhaupt, “Polymers for 3D Printing and
  • [147] Customized Additive Manufacturing,” Chemical
  • [148] Reviews, vol. 117, no. 15. American Chemical
  • [149] Society, pp. 10212–10290, Aug. 09, 2017. doi:
  • [150] 10.1021/acs.chemrev.7b00074.
  • [151] [34] K. V. Wong and A. Hernandez, “A Review of
  • [152] Additive Manufacturing,” ISRN Mechanical
  • [153] Engineering, vol. 2012, pp. 1–10, Aug. 2012, doi:
  • [154] 10.5402/2012/208760.
  • [155] [35] J. R. Tumbleston et al., “Continuous liquid interface
  • [156] production of 3D objects,” Science (1979), vol. 347,
  • [157] no. 6228, pp. 1349–1352, Mar. 2015, doi:
  • [158] 10.1126/science.aaa2397.
  • [159] [36] R. K. Leach, D. Bourell, S. Carmignato, A. Donmez,
  • [160] N. Senin, and W. Dewulf, “Geometrical metrology
  • [161] for metal additive manufacturing,” CIRP Annals,
  • [162] vol. 68, no. 2, pp. 677–700, Jan. 2019, doi:
  • [163] 10.1016/j.cirp.2019.05.004.
  • [164] [37] C. Li, Z. Y. Liu, X. Y. Fang, and Y. B. Guo,
  • [165] “Residual Stress in Metal Additive Manufacturing,”
  • [166] in Procedia CIRP, Elsevier B.V., 2018, pp. 348–353.
  • [167] doi: 10.1016/j.procir.2018.05.039.
  • [168] [38] D. D. Gu, W. Meiners, K. Wissenbach, and R.
  • [169] Poprawe, “Laser additive manufacturing of metallic
  • [170] components: Materials, processes and mechanisms,”
  • [171] International Materials Reviews, vol. 57, no. 3.
  • [172] Maney Publishing, pp. 133–164, 2012. doi:
  • [173] 10.1179/1743280411Y.0000000014.
  • [174] [39] G. A. O. Adam and D. Zimmer, “Design for Additive
  • [175] Manufacturing-Element transitions and aggregated
  • [176] structures,” CIRP J Manuf Sci Technol, vol. 7, no. 1,
  • [177] pp. 20–28, 2014, doi: 10.1016/j.cirpj.2013.10.001.
  • [178] [40] F. Wang, B. S. Lazarov, and O. Sigmund, “On
  • [179] projection methods, convergence and robust
  • [180] formulations in topology optimization,” Structural
  • [181] and Multidisciplinary Optimization, vol. 43, no. 6,
  • [182] pp. 767–784, Oct. 2011, doi: 10.1007/s00158-022-
  • [183] 03326-6.
  • [184] [41] M. P. Bendsøe and O. Sigmund, Topology
  • [185] Optimization. Springer Berlin Heidelberg, 2004. doi:
  • [186] 10.1007/978-3-662-05086-6.
  • [187] [42] A. T. Gaynor, N. A. Meisel, C. B. Williams, and J.
  • [188] K. Guest, “Multiple-Material Topology
  • [189] Optimization of Compliant Mechanisms Created Via
  • [190] PolyJet Three-Dimensional Printing,” Journal of
  • [191] Manufacturing Science and Engineering,
  • [192] Transactions of the ASME, vol. 136, no. 6, Dec.
  • [193] 2014, doi: 10.1115/1.4028439.
  • [194] [43] T. Zegard and G. H. Paulino, “Bridging topology
  • [195] optimization and additive manufacturing,”
  • [196] Structural and Multidisciplinary Optimization, vol.
  • [197] 53, no. 1, pp. 175–192, Jan. 2016, doi:
  • [198] 10.1007/s00158-015-1274-4.
  • [199] [44] D. Brackett, I. Ashcroft, and R. Hague, “Topology
  • [200] Optimization for Additive Manufacturing.”
  • [201] [45] L. Henrique Dal Castel Missio, “Otimização
  • [202] Topológica de Pistão em Suspensão a Ar,”
  • [203] Monografia, Universidade de Brasília, 2019.
  • [204] [46] H. Bikas, P. Stavropoulos, and G. Chryssolouris,
  • [205] “Additive manufacturing methods and modeling
  • [206] approaches: A critical review,” International
  • [207] Journal of Advanced Manufacturing Technology, vol. 83, no. 1–4, pp. 389–405, Mar. 2016, doi:
  • [208] 10.1007/s00170-015-7576-2.
  • [209] [47] H. Gong, K. Rafi, H. Gu, T. Starr, and B. Stucker,
  • [210] “Analysis of defect generation in Ti-6Al-4V parts
  • [211] made using powder bed fusion additive
  • [212] manufacturing processes,” Addit Manuf, vol. 1, pp.
  • [213] 87–98, Oct. 2014, doi:
  • [214] 10.1016/j.addma.2014.08.002.
  • [215] [48] Z. Luo and Y. Zhao, “Numerical simulation of partlevel temperature fields during selective laser
  • [216] melting of stainless steel 316L,” International
  • [217] Journal of Advanced Manufacturing Technology,
  • [218] 2019, doi: 10.1007/s00170-019-03947-0ï.
  • [219] [49] P. Li, D. H. Warner, A. Fatemi, and N. Phan,
  • [220] “Critical assessment of the fatigue performance of
  • [221] additively manufactured Ti-6Al-4V and perspective
  • [222] for future research,” Int J Fatigue, vol. 85, pp. 130–
  • [223] 143, Apr. 2016, doi:
  • [224] 10.1016/j.ijfatigue.2015.12.003.
  • [225] [50] T. Hanemann and D. V. Szabó, “Polymernanoparticle composites: From synthesis to modern
  • [226] applications,” Materials, vol. 3, no. 6. pp. 3468–
  • [227] 3517, 2010. doi: 10.3390/ma3063468.
  • [228] [51] B. N. Turner, R. Strong, and S. A. Gold, “A review
  • [229] of melt extrusion additive manufacturing processes:
  • [230] I. Process design and modeling,” Rapid Prototyping
  • [231] Journal, vol. 20, no. 3. Emerald Group Publishing
  • [232] Ltd., pp. 192–204, 2014. doi: 10.1108/RPJ-01-2013-
  • [233] 0012.
  • [234] [52] W. J. Sames, F. A. List, S. Pannala, R. R. Dehoff,
  • [235] and S. S. Babu, “The Metallurgy and Processing
  • [236] Science of Metal Additive Manufacturing.”
  • [237] [53] P. K. Gokuldoss, S. Kolla, and J. Eckert, “Additive
  • [238] Manufacturing Processes: Selective Laser Melting,
  • [239] Electron Beam Melting and Binder Jetting—
  • [240] Selection Guidelines,” Materials, vol. 10, no. 6, p.
  • [241] 672, Jun. 2017, doi: 10.3390/ma10060672.
  • [242] [54] A. Zocca, P. Colombo, C. M. Gomes, and J. Günster,
  • [243] “Additive Manufacturing of Ceramics: Issues,
  • [244] Potentialities, and Opportunities,” Journal of the
  • [245] American Ceramic Society, vol. 98, no. 7, pp. 1983–
  • [246] 2001, Jul. 2015, doi: 10.1111/jace.13700.
  • [247] [55] R. Sreenivasan, A. Goel, and D. L. Bourell,
  • [248] “Sustainability issues in laser-based additive
  • [249] manufacturing,” in Physics Procedia, Elsevier B.V.,
  • [250] 2010, pp. 81–90. doi: 10.1016/j.phpro.2010.08.124"
Como citar:

DOMINGUES, Wesley Vinícius; ARCE, Rodrigo Pulido; FROSE, Luciano Rafael Hansel; "Manufatura aditiva e a simulação computacional: uma revisão das tecnologias e aplicações integradas", p. 238-248 . In: Anais do XXX Simpósio Internacional de Engenharia Automotiva . São Paulo: Blucher, 2023.
ISSN 2357-7592, DOI 10.5151/simea2023-PAP34

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações