Full article - Open Access.

Idioma principal | Segundo idioma

LOGISTICS OPTIMIZATION OF DECOMMISSIONED WIND TURBINE BLADES FOR ENERGY RECOVERY IN CEMENT PLANT IN BAHIA

LOGISTICS OPTIMIZATION OF DECOMMISSIONED WIND TURBINE BLADES FOR ENERGY RECOVERY IN CEMENT PLANT IN BAHIA

Ramos Júnior, Mário Joel ; Meideiros, Diego Lima ; Almeida, Edna dos Santos ; Azevedo, Joyce Batista ;

Full article:

This study aims to evaluate the logistics of decommissioning wind turbine blades for an energy recovery scenario in a cement kiln in the State of Bahia – Brazil. The Center of Gravity Method (CGM) was used to define the optimized location of the Materials Processing Center (MPC) from waste resources based on the coordinates, composite material mass and transportation cost of the 247 wind farms, while the Material Flow Analysis (MFA) was used to elaborate the mass balance from Brotas de Macaúbas Wind Complex. The results indicated that the energy recovery of the 1 070 t composite material of the Brotas de Macaúbas Wind Complex can replace 642 t of petroleum coke in a cement plant. Energy recovery in cement plants provides a feasible method for composite disposal of old blades, as long as the costs of transportation, segregation, and shredding are affordable.

Full article:

This study aims to evaluate the logistics of decommissioning wind turbine blades for an energy recovery scenario in a cement kiln in the State of Bahia – Brazil. The Center of Gravity Method (CGM) was used to define the optimized location of the Materials Processing Center (MPC) from waste resources based on the coordinates, composite material mass and transportation cost of the 247 wind farms, while the Material Flow Analysis (MFA) was used to elaborate the mass balance from Brotas de Macaúbas Wind Complex. The results indicated that the energy recovery of the 1 070 t composite material of the Brotas de Macaúbas Wind Complex can replace 642 t of petroleum coke in a cement plant. Energy recovery in cement plants provides a feasible method for composite disposal of old blades, as long as the costs of transportation, segregation, and shredding are affordable.

Palavras-chave: Locational optimization; Wind turbine blade; Solid waste management; Energy recovery; Composite material,

Palavras-chave: Locational optimization; Wind turbine blade; Solid waste management; Energy recovery; Composite material,

DOI: 10.5151/siintec2023-306343

Referências bibliográficas
  • [1] "ANEEL. SIGA - Sistema de Informações de Geração da ANEEL - Dados Abertos - Agência Nacional de Energia Elétrica. 2022. Disponível em: https://dadosabertos.aneel.gov.br/dataset/siga-sistema-de-informacoes-de-geracao-da-aneel. Acesso em: 1 nov. 2022.
  • [2] EPE. Balanço Energético Nacional 2022: Ano Base 2021. Rio de Janeiro: Empresa de Pesquisa Energética, 202 Disponível em: https://www.epe.gov.br/pt/publicacoes-dados-abertos/publicacoes/balanco-energetico-nacional-202 Acesso em: 22 abr. 2023.
  • [3] ABEEÓLICA. Boletim Anual de Geração Eólica 2021. São Paulo: Associação Brasileira de Energia Eólica, 2022. Disponível em: https://abeeolica.org.br/energia-eolica/dados-abeeolica/?ano=2022. Acesso em: 1 maio 2022.
  • [4] STATKRAFT. Complexo Eólico Brotas de Macaúbas. 2023. Disponível em: https://www.statkraft.com.br/onde-operamos/brasil/complexo-eolico-de-brotas-de-macaubas/. Acesso em: 30 jul. 2023.
  • [5] DORIGATO, A. Recycling of thermosetting composites for wind blade application. Advanced Industrial and Engineering Polymer Research, v. 4, n. 2, p. 116–132, abr. 2021. https://doi.org/10.1016/j.aiepr.2021.02.002CHEN, J.; WANG, J.; NI, A. Recycling and reuse of composite materials for wind turbine blades: An overview. Journal of Reinforced Plastics and Composites, v. 38, n. 12, p. 567–577, jun. 2019. https://doi.org/10.1177/0731684419833470.
  • [6] MARTINEZ-MARQUEZ, D.; FLORIN, N.; HALL, W.; MAJEWSKI, P.; WANG, H.; STEWART, R. A. State-of-the-art review of product stewardship strategies for large composite wind turbine blades. Resources, Conservation & Recycling Advances, v. 15, p. 200109, nov. 2022. https://doi.org/10.1016/j.rcradv.2022.200109. JENSEN, J. P.; SKELTON, K. Wind turbine blade recycling: Experiences, challenges and possibilities in a circular economy. Renewable and Sustainable Energy Reviews, v. 97, p. 165–176, dez. 2018. https://doi.org/10.1016/j.rser.2018.08.041.
  • [7] ABCP. Panorama_Coprocessamento_2022_Ano_Base_2021.pdf. São Paulo: Associação Brasileira de Cimento Portland, 2022. Disponível em: https://coprocessamento.org.br/wp-content/uploads/2022/12/Panorama_Coprocessamento_2022_Ano_Base_2021.pdf. Acesso em: 13 fev. 2023. ETIPWIND. How wind is going circular - Blade recycling. [S. l.]: European Techbology & Innovation Platform on Wind Energy, 2019. Disponível em: https://etipwind.eu/publications/. Acesso em: 13 fev. 2023.
  • [8] BRASIL. Conselho Nacional do Meio Ambiente. Dispõe sobre o licenciamento da atividade de coprocessamento de resíduos em fornos rotativos de produção de clínquer. seç. 1, p. 50, 8 out. 2020. Disponível em: https://www.in.gov.br/en/web/dou/-/resolucao-conama/mma-n-499-de-6-de-outubro-de-2020-281790575.
  • [9] COOPERMAN, A.; EBERLE, A.; LANTZ, E. Wind turbine blade material in the United States: Quantities, costs, and end-of-life options. Resources, Conservation and Recycling, v. 168, p. 105439, maio 2021. https://doi.org/10.1016/j.resconrec.2021.10543
  • [10] EPE. Empreendimentos eólicos ao fim da vida útil - Situação Atual e Perspectivas Futuras. Nota Técnica. Brasília: Empresa de Pesquisa Energética, 8 fev. 2021. Disponível em: https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-563/NT-EPE-DEE-012-2021.pdf. Acesso em: 23 abr. 2022.
  • [11] ARIAS, F.; BANK, L. Assessment of Present/Future Decommissioned Wind Blade Fiber-Reinforced Composite Material in the United States. City College of New York, p. 69, 2016.
  • [12] MARTINS, P. G.; LAUGENI, F. P. Administração da produção. 3a edição. [S. l.]: Saraiva Uni, 2015. BITTENCOURT, B. N.; SERVARE JUNIOR, M. W. J. CENTRO DE GRAVIDADE PARA LOCALIZAR CENTRO DE COLETA PARA A ECONOMIA CIRCULAR DO ÓLEO DE COZINHA EM VITÓRIA, ES: GRAVITY CENTER TO LOCATE A COLLECTION CENTER FOR THE CIRCULAR ECONOMY OF COOKING OIL IN VITÓRIA, ES. Brazilian Journal of Production Engineering - BJPE, , p. 194–206, 14 dez. 2021. https://doi.org/10.47456/bjpe.v7i5.37047.
  • [13] SULTAN, A. A. M.; MATIVENGA, P. T.; LOU, E. Managing Supply Chain Complexity: Foresight for Wind Turbine Composite Waste. Procedia CIRP, v. 69, p. 938–943, 2018. https://doi.org/10.1016/j.procir.2017.11.027.
  • [14] MARTIN, C. Wind Turbine Blades Can’t Be Recycled, So They’re Piling Up in Landfills. Bloomberg.com, 5 fev. 2020. Disponível em: https://www.bloomberg.com/news/features/2020-02-05/wind-turbine-blades-can-t-be-recycled-so-they-re-piling-up-in-landfills. Acesso em: 16 abr. 2023.
  • [15] RIVERCAP. Fiberglass Recycling | RiverCap. 2023. Disponível em: https://www.rivercapllc.com/fiberglass-recycling. Acesso em: 13 fev. 2023.
  • [16] BRUNNER, P. H.; RECHBERGER, H. Practical Handbook of Material Flow Analysis. 0 ed. [S. l.]: CRC Press, 2003. DOI 10.1201/9780203507209. Disponível em: https://www.taylorfrancis.com/books/9780203507209. Acesso em: 23 jun. 2022. ALSTOM. Aerogeradores da Alstom ofereceram o mais alto rendimento no mercado brasileiro nos últimos doze meses. 2014. Alstom. Disponível em: https://www.alstom.com/pt/press-releases-news/2014/8/aerogeradores-da-alstom-ofereceram-o-mais-alto-rendimento-no-mercado-brasileiro-nos-ultimos-doze-meses. Acesso em: 30 jul. 2023.
  • [17] DIAS, B. A. Energia eólica e o estudo de caso do Parque Eólico de Brotas de Macaúbas. mar. 2015. Disponível em: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/18485. Acesso em: 30 jul. 2023.
  • [18] BAUER, L.; MATYSIK, S. Alstom ECO 86 - 1,67 MW - Wind turbine. 2023. Disponível em: https://en.wind-turbine-models.com/turbines/794-alstom-eco-86. Acesso em: 30 jul. 2023.
  • [19] GOVERNO DO ESTADO DA BAHIA. Brotas de Macaúbas recebe hélices para aerogeradores de parque eólico. 16 mar. 2011. Portal Gov Bahia. Disponível em: https://www.bahia.ba.gov.br/2011/03/noticias/industria/brotas-de-macaubas-recebe-helices-para-aerogeradores-de-parque-eolico/. Acesso em: 30 jul. 2023.
  • [20] LIU, P.; BARLOW, C. Y. The environmental impact of wind turbine blades. IOP Conference Series: Materials Science and Engineering, v. 139, p. 012032, jul. 2016. https://doi.org/10.1088/1757-899X/139/1/012032.
  • [21] NAGLE, A. J.; DELANEY, E. L.; BANK, L. C.; LEAHY, P. G. A Comparative Life Cycle Assessment between landfilling and Co-Processing of waste from decommissioned Irish wind turbine blades. Journal of Cleaner Production, v. 277, p. 123321, dez. 2020. https://doi.org/10.1016/j.jclepro.2020.1233
  • [22] INTERCEMENT BRASIL. Institucional. 2023. Intercement Brasil. Disponível em: https://brasil.intercement.com/institucional/. Acesso em: 2 abr. 2023.
  • [23] EPRI. Wind Turbine Blade Recycling: Preliminary Assessment. Techinical Report, n. Eletric Power Research Institute. California: EPRI, 2020. Disponível em: https://www.epri.com/research/products/000000003002017711. Acesso em: 8 maio 20
  • [24] LIU, P.; MENG, F.; BARLOW, C. Y. Wind turbine blade end-of-life options: An eco-audit comparison. Journal of Cleaner Production, v. 212, p. 1268–1281, mar. 2019. https://doi.org/10.1016/j.jclepro.2018.12.043.
  • [25] ROLAND JUNIOR, G. R. O.; ZATTAR, I. C. GESTÃO DA CADEIA DE SUPRIMENTOS DO COQUE DE PETROLEO NA INDÚSTRIA CIMENTEIRA. 2 dez. 2022. Anais do ConBRepro 2022 [...]. Universidade Tecnológica Federal do Paraná: [s. n.], 2 dez. 2022. p. 12. Disponível em: https://aprepro.org.br/conbrepro/anais/. Acesso em: 22 maio 2023.
  • [26] TORRES, V. A.; LANGE, L. C. Rotas tecnológicas, desafios e potencial para valoração energética de resíduo sólido urbano por coprocessamento no Brasil. Engenharia Sanitária e Ambiental, v. 27, n. 1, p. 25–30, fev. 2022. https://doi.org/10.1590/s1413-415220210221."
Como citar:

Ramos Júnior, Mário Joel ; Meideiros, Diego Lima ; Almeida, Edna dos Santos ; Azevedo, Joyce Batista ; "LOGISTICS OPTIMIZATION OF DECOMMISSIONED WIND TURBINE BLADES FOR ENERGY RECOVERY IN CEMENT PLANT IN BAHIA", p. 509-516 . In: . São Paulo: Blucher, 2023.
ISSN 2357-7592, DOI 10.5151/siintec2023-306343

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações