Conference full papers - Open Access.

Idioma principal

Gridshell structural evaluation criteria based on Upward and Downward Modeling Methods in Karamba3D

Gridshell structural evaluation criteria based on Upward and Downward Modeling Methods in Karamba3D

Matos, Elisa Bomtempo ; Martinez, Andressa Carmo Pena ;

Conference full papers:

Despite the vast number of researches that address Gridshells as regular meshes, there is a lack of studies discussing hybrid meshes. In this context, this paper presents a parametric approach and employs visual algorithms for designing digital gridshells with different mesh patterns. We intend to formulate a methodology for Karamba 3D applications that address the structural performance according to variations in geometric composition, number of props, and construction methods. The work seeks to examine patterns that improve structural performance, through a parallel discussion between Upward and Downward modeling methods. Although the Upward modeling method is the most recurrent in studies on the topic, in this study, the Downward method generated structures with better structural performance.

Conference full papers:

Palavras-chave: Gridshell, Pattern, Geometric Modeling, Structural Design, Structural Optimization,

Palavras-chave:

DOI: 10.5151/sigradi2020-26

Referências bibliográficas
  • [1] Adriaenssens, S., Block, P., Veenendaal, D., & Williams, C. (2014). Shell structures for architecture: Form finding and optimization. In Shell Structures for Architecture: Form Finding and Optimization (1st ed., Vol. 9781315849). Routledge. https://doi.org/10.4324/9781315849270.
  • [2] Carvalho, D.F.P.A. (2015). Gidshells em madeira: morfologia, aplicabilidade, comportamento estrutural e projeto. Dissertação de Mestrado, Universidade de Coimba, Coimbra, Portugal.
  • [3] Chilton, J. (2016). Timber gridshells: Architecture, structure and craft (1o ed). London, U. K: Routledge.
  • [4] Dimcic. M (2011). Structural Optimization of Grid Shells based on Genetic Algorithms Stuttgart. Dissertação de Doutorado. Universit¨at Stuttgart, Alemanha.
  • [5] Dzwierzynska, J. (2018). Shaping curved steel rod structures. Czasopismo Techniczne, 8.
  • [6] https://doi.org/10.4467/2353737XCT.18.117.8892
  • [7] Dzwierzynska, J. (2020). Multi-objective optimizing curvilinear steel bar structures of hyperbolic paraboloid canopy roofs. Buildings, 10(3),39. https://doi.org/10.3390/buildings10030039
  • [8] Eliassen, M. Huseby, A.(2018) The Digital Workflow of Parametric Structural Design Developing Grid Shells in a Nordic Climate. Tese de Mestrado, University in Trondheim, Noruega.
  • [9] Hernández, C. H. (2015). Recent developments in architectural fabric structures in Latin America. In Fabric Structures in Architecture (p.585–660).Elsevier. https://doi.org/10.1016/B978-1-78242-233-4.00017-6
  • [10] Kunz, M., & Prauchner, M. B. (2015). Uso do sistema estrutural gridshell na criação de formas complexas em estruturas de madeira. Revista de Arquitetura IMED, 4(1), 19–25. https://doi.org/18256/2318-1109/arqimed.v4n1p19-25
  • [11] Love, A. E. H. (1888). The Small Free Vibrations and Deformation of a Thin Elastic Shell. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 179(0), 491–
  • [12] 546. doi:10.1098/rsta.1888.0016
  • [13] Naicu, D. I. (2012). Geometry and performance of timber gridshells. Dissertação de mestrado. University of Bath, Baht, Inglaterra.
  • [14] Oval, R., Rippmann, M., Mesnil, R., Van Mele, T., Baverel, O., & Block, P. (2019). Feature-based topology finding of patterns for shell structures. Automation in Construction, 103, 185– 201. https://doi.org/10.1016/j.autcon.2019.02.008
  • [15] Paoli, C. (2007). Past and future of grid shell structures. Dissertação de Mestrado, Massachusetts Institute of Technology – MIT, Massachusetts, Estados Unidos da América.
  • [16] Pone, S. D‟amico, B. Colabella, S. Flore. A. (2013). Timber post formed gridshell: digital forma finding/ drawing and building tool. In: Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium. Retrieved from: https://www.researchgate.net/publication/261285620_Timber
  • [17] _post_formed_grid_shell_digital_form_finding_drawing_and_ building_tool.
  • [18] Pottmann, H., Eigensatz, M., Vaxman, A., & Wallner, J. (2015). Architectural geometry. Computers & Graphics, 47, 145–164. https://doi.org/10.1016/j.cag.2014.11.002
  • [19] Preisinger, C. (2016). Parametric structural modeling Karamba: User Manual For version 1.2.2. Retrieved from : http://web.arch.virginia. edu/struct/ arch721/docs/Karamba_1_2_2_Manual.pdf.
  • [20] Rieffel, J, Valero-Cuevas, F., Lipson, H., (2009) "Automated discovery and optimization of large irregular tensegrity structures",Computers and Structures, Vol. 87, pp. 368-379.
  • [21] Santana, L.O; Guimarães, Í.B.B; Carlo, J.C., 2015.
  • [22] Parametrização aplicada ao desempenho energético de edificações. V!RUS, São Carlos,11.[online] Retrieved from: http://www.nomads.usp.br/virus/virus11/?sec=4&item=4&lang
  • [23] =pt
  • [24] Toussaint, M. H.Ba.(2007). Design Tool for Timber Gridshells. Dissertação de mestrado. Delft University of Technolog, Delft, Holanda.
  • [25] Williams, C. (2014). What is a shell? In Adriaenssens, S., Block, P., Veenendaal, D., & Williams, C. (Eds.). Shell Structures for Architecture: Form Finding and Optimization (pp 21-31). London, U. K: Routledge.
Como citar:

Matos, Elisa Bomtempo; Martinez, Andressa Carmo Pena; "Gridshell structural evaluation criteria based on Upward and Downward Modeling Methods in Karamba3D", p. 188-195 . In: Congreso SIGraDi 2020. São Paulo: Blucher, 2020.
ISSN 2318-6968, DOI 10.5151/sigradi2020-26

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações