Conference full papers - Open Access.

Idioma principal

Generating architectural plan with evolutionary multiobjective optimization algorithms: a benchmark case with an existent construction system

Generating architectural plan with evolutionary multiobjective optimization algorithms: a benchmark case with an existent construction system

Canestrino, Giuseppe; Laura, Greco; Spada, Francesco; Lucente, Roberta;

Conference full papers:

In architectural design, evolutionary multiobjective optimization algorithms (EMOA) have found use in numerous practical applications in which qualitative and quantitative aspects can be transformed into fitness functions to be optimized. This paper shows that they can be used in an architectural plan design process that starts from a more traditional approach. The benchmark case uses a novel construction system, called Ac.Ca. Building, with a vast architectural and technological database, arleady validated, to generate architectural plan for a residential towerbuilding with a parametric approach and EMOA. The proposed framework differs from past research because uses spatial units with high level of architectural and tecnological definition.

Conference full papers:

Palavras-chave: Architectural design, Parametric architecture, Performance-driven design, architectural layout, evolutionary multiobjective optimization,


DOI: 10.5151/sigradi2020-21

Referências bibliográficas
  • [1] Bayraktar, M., & Çagda�, G. (2013). Fuzzy layout planner. A simple layout planning tool for early stages of design. Computation and Performance - Proceedings of the 31st eCAADe Conference (p. 375-382). Delft: Sevil.
  • [2] Beck, K., Beedle, M., Bennekum, A., Cockburn, A., Cunningham, W., Flowler, M., Thomas, D. (2001). Manifesto For Agile Software Development. Tratto il giorno May 27 2020 da
  • [3] Bernholtz, A., & Fosburg, S. (1972). Spatial allocation in design and planing. DAC '72: Proceedings of the 9th Design Automation Workshop, (p. 181-189).
  • [4] Calixto, V., & Celani, G. (2015). A literature review for space planning optimization using an evolutionary algorithm approach: 1992-201 Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 2 - ISBN: 978-85-8039-133-6, (p. 662-671). Florianópolis.
  • [5] Computer Arts Society. (1969). Event One Catalogue. Tratto il giorno May 26, 2020 da https://computer-arts-
  • [6] Damski, J., & Gero, J. (1997). An evolutionary approach to generating constraint-based space layout topologies. CAAD Futures (p. 855-874). Dordrecht: Kluwer Academic Publishing.
  • [7] Deb, K. (2011). Multi-objective optimization using evolutionary algorithms: an introduction. Kanpur: KanGAL Report.
  • [8] Eastman, C. (1971). GPS: A system for computer assisted space planning. DAC '71: Proceedings of the 8th Design Automation Worshop, (p. 208-220).
  • [9] Elezkurtaj, T., & Franck, G. (2002). Algorithmic support of creative architectural design. Umbau 19, 129-137.
  • [10] Frazer, J. (1974, April). Reptiles. Architectural Design, p. 231-239. Frazer, J. (1995). An evolutionary Architecture. London:
  • [11] Architectural Association.
  • [12] Graf, W. H., & Hower, W. (1996). A bibliographical survey of constraint-based approaches to CAD, graphics, layout, visualization, and related topics. Knowledge-Based Systems(9), p. 449-464.
  • [13] Gravilov, E., Schneider, S., Dennemark, M., & Koenig, R. (2020). Computer-aided approach to public buildings floor plan generation. Magnetizing floor plan generator. Procedia Manufacturing 44 (p. 132-139). Elsevier.
  • [14] Jagielski, R., & Gero, J. S. (1996). A genetic programming approach to the space layout planning problem. CAAD Futures, 875-884.
  • [15] Knecht, K., & König, R. (2010). Generating floor plan layouts with k-d trees and evolutionary algorithms. XIII Generative Art Conference (p. 238-253). Milano: Domus Argenia.
  • [16] Ligget, R. (1985). Optimal spatial arrangment as a quadratic assignment problem. Design Optimization, 1-40.
  • [17] Liggett, R. S. (2000). Automated facilities layout: past, present and future. Automation in Construction(9), p. 197-215.
  • [18] Lucente, R. (2020). Abitare Acciaio. Siracusa: LetteraVentidue. Makki, M., Showkatbakhsh, M., & Song, Y. (2019). Wallacei Primer
  • [19] 2.0. [Online]. Tratto da
  • [20] Menges, A., & Ahlquist, S. (2011). Computational Design Thinking.
  • [21] Chichester: John Wiley & Sons.
  • [22] Negroponte, N. (1970). The architecture machine. Toward a more human environment. Cambridge: The MIT Press.
  • [23] Tedeschi, A. (2014). AAD_Algorithms-Aided Design. Edizioni Le Penseur.
  • [24] Vierlinger, R., & Hofmann, A. (2013). A framework for flexible search and optimization in parametric design. Design Modelling Symposium – Rethinking Prototyping , (p. 1-9). Berlin.
  • [25] Williams, J. H. (2008). Employee engagement: Improving articipation in safety. Professional Safety, , 12(53), 40-45 .
Como citar:

Canestrino, Giuseppe; Laura, Greco; Spada, Francesco; Lucente, Roberta; "Generating architectural plan with evolutionary multiobjective optimization algorithms: a benchmark case with an existent construction system", p. 149-156 . In: Congreso SIGraDi 2020. São Paulo: Blucher, 2020.
ISSN 2318-6968, DOI 10.5151/sigradi2020-21

últimos 30 dias | último ano | desde a publicação