Artigo completo - Open Access.

Idioma principal | Segundo idioma

EVALUATION OF BRAZILIAN CONTRIBUTION TO THE SUSTAINABLE DEVELOPMENT GOALS THROUGH GREEN CHEMISTRY: A SYSTEMIC REVIEW

AVALIAÇÃO DA CONTRIBUIÇÃO BRASILEIRA COM OS OBJETIVOS DE DESENVOLVIMENTO SUSTENTÁVEL ATRAVÉS DA QUÍMICA VERDE: UMA REVISÃO SISTÊMICA

Leal Filho, Marcus Vinícius Amaral ; Korn, Maria das Graças Andrade ; Guarieiro, Lilian Lefol Nani ;

Artigo completo:

The growing commitment of Chemistry to the Sustainable Development Goals (SDG) can be expressed through Green Chemistry. This work aims to evaluate the Brazilian contribution to sustainable development through Green Chemistry, in the area of Analytical Chemistry. It was possible to verify a greater number of publications related to the theme for institutions in 8 Brazilian states, with emphasis on São Paulo and Rio Grande do Sul. It was found that all articles evaluated contributed to SDG 12 by proposing analytical methods that reduce the amount of waste generated or propose replacement of toxic reagents / solvents with similar non-harmful ones. It can be concluded that the contribution of Brazilian researchers has been significant in different areas of analytical chemistry, including sample preparation, instrumentation and separation techniques.

Artigo completo:

O crescente compromisso da Química com os Objetivos de Desenvolvimento Sustentável (ODS) pode ser expresso através da Química Verde. O presente trabalho tem como objetivo avaliar a contribuição brasileira com o desenvolvimento sustentável através da Química Verde, na área de Química Analítica. Foi possível constatar um número maior de publicações relacionadas ao tema para instituições de 8 estados brasileiros, com destaque para São Paulo e Rio Grande do Sul. Verificou-se que todos os artigos avaliados contribuíram com o ODS 12 ao propor métodos analíticos que diminuem a quantidade de resíduos gerados ou propõem substituição de reagentes/solventes tóxicos por similares não nocivos. Pode-se concluir que a contribuição dos pesquisadores brasileiros tem sido significativa nas diferentes áreas da química analítica, entre elas preparo de amostras, instrumentação e técnicas de separação.

Palavras-chave: Sustainable Development Goals; Green Chemistry; Green Analytical Chemistry.,

Palavras-chave: Objetivos de Desenvolvimento Sustentável; Química Verde; Química Analítica Verde.,

DOI: 10.5151/siintec2020-EVALUATIONOFBRAZILIAN

Referências bibliográficas
  • [1] 1 FERRI, N. United nations general assembly. International Journal of Marine and Coastal Law, v. 25, n. 2, p. 271–287, 2010
  • [2] 2 LENARDÃO, E. J. et al. “Green chemistry” - Os 12 princípios da química verde e sua inserção nas atividades de ensino e pesquisa. Quimica Nova, v. 26, n. 1, p. 123–129, 2003.
  • [3] 3 ANASTAS, P. T.; ZIMMERMAN, J. B. The United Nations sustainability goals: How can sustainable chemistry contribute? Current Opinion in Green and Sustainable Chemistry, v. 13, p. 150–153, 2018.
  • [4] 4 FUNARI, C. S.; CAVALHEIRO, A. J.; CARNEIRO, R. L. Coupled monolithic columns as an alternative for the use of viscous ethanol–water mobile phases on chromatographic fingerprinting complex samples. Brazilian Journal of Pharmacognosy, v. 28, n. 3, p. 261–266, 1 maio 2018.
  • [5] 5 GAMA, M. R. et al. An overview of the brazilian contributions to green analytical chemistry. [s.l: s.n.]. v. 91
  • [6] 6 FERREIRA, D. F. et al. Thermal infrared enthalpimetry in paper microzone plates for green and high throughput determination of wine acidities. Journal of the Brazilian Chemical Society, v. 31, n. 2, p. 421–428, 2020.
  • [7] 7 DALLA NORA, F. M. et al. A novel thermal infrared enthalpimetric method for fast, high-throughput determination of the content uniformity of captopril tablets. Journal of the Brazilian Chemical Society, v. 30, n. 5, p. 1082–1088, 2019.
  • [8] 8 MILANI, R. F.; MORGANO, M. A.; DIEGO QUINTAES, K. Rapid Elemental Analysis of Sugarcane Spirits by Inductively Coupled Plasma: Optical Emission Spectrometry. Analytical Letters, v. 52, n. 3, p. 526–538, 2019.
  • [9] 9 ACEVEDO, M. S. M. S. F. et al. A green and cost-effective procedure for determination of anionic surfactants in milk with liquid-liquid microextraction and smartphone-based photometric detection. Microchemical Journal, v. 143, n. August, p. 259–263, 2018.
  • [10] 10 RAVAZZI, C. G. et al. Smartphone application for captopril determination in dosage forms and synthetic urine employing digital imaging. Talanta, v. 189, n. March, p. 339–344, 2018.
  • [11] 11 DALLA NORA, F. M. et al. Miniaturized, high-throughput and green determination of the saponification value of edible oils using thermal infrared enthalpimetry. Analytical Methods, v. 10, n. 30, p. 3770–3776, 2018.
  • [12] 12 BIZZI, C. A. et al. Maxwell-Wagner Effect Applied to Microwave-Induced Self-Ignition: A Novel Approach for Carbon-Based Materials. Analytical Chemistry, v. 90, n. 7, p. 4363–4369, 2018.
  • [13] 13 ALMEIDA, P. L. et al. A rapid, sensitive and green analytical method for the determination of sulfite in vinegars using pararosaniline reaction with image detection. Analytical Methods, v. 10, n. 4, p. 448–458, 2018.
  • [14] 14 OLIVEIRA, A. S. et al. One-Shot, reagent-free determination of the alcoholic content of distilled beverages by thermal infrared enthalpimetry. Talanta, v. 171, n. May, p. 335–340, 2017.
  • [15] 15 DE PRÁ URIO, R.; MASINI, J. C. Determination of Simazine and Atrazine in River Water by Cloud-Point Extraction and High-Performance Liquid Chromatography. Analytical Letters, v. 50, n. 7, p. 1065–1074, 2017.
  • [16] 16 MULLER, E. I. et al. Microwave-assisted wet digestion with H2O2 at high temperature and pressure using single reaction chamber for elemental determination in milk powder by ICP-OES and ICP-MS. Talanta, v. 156–157, p. 232–238, 20
  • [17] 17 PEREIRA, L. S. F. et al. Determination of elemental impurities in poly(vinyl chloride) by inductively coupled plasma optical emission spectrometry. Talanta, v. 152, p. 371–377, 2016.
  • [18] 18 SOARES, S.; ROCHA, F. R. P. Fast spectrophotometric determination of iodine value in biodiesel and vegetable oils. Journal of the Brazilian Chemical Society, v. 29, n. 8, p. 1701–1706, 1 ago. 20
  • [19] 19 CASTOLDI, K. et al. Flow injection analysis of 5-(hydroxymethyl)-2-furaldehyde in honey by a modified winkler method. Analytical Sciences, v. 32, n. 4, p. 413–417, 2016.
  • [20] 20 LIMA, M. J. A. et al. Development of a new procedure for the determination of captopril in pharmaceutical formulations employing chemiluminescence and a multicommuted flow analysis approach. Luminescence, v. 31, n. 1, p. 288–294, 2016.
  • [21] 21 DAMASCENO, D. et al. CompVis: A novel method for drinking water alkalinity and total hardness analyses. Analytical Methods, v. 8, n. 43, p. 7832–7836, 2016.
  • [22] 22 PINTO, L. et al. Handling time misalignment and rank deficiency in liquid chromatography by multivariate curve resolution: Quantitation of five biogenic amines in fish. Analytica Chimica Acta, v. 902, p. 59–69, 2016.
  • [23] 23 NASCIMENTO, M. M.; DA ROCHA, G. O.; DE ANDRADE, J. B. A rapid low-consuming solvent extraction procedure for simultaneous determination of 34 multiclass pesticides associated to respirable atmospheric particulate matter (PM2.5) by GC–MS. Microchemical Journal, v. 139, p. 424–436, 2018.
  • [24] 24 SOUZA, P. A. F.; SASAKI, M. K.; ROCHA, F. R. P. Exploitation of a short monolithic column for in-line separation and preconcentration: Environmental friendly determination of the emerging pollutant salicylic acid in natural waters. Journal of Separation Science, v. 43, n. 7, p. 1232–1239, 2020.
  • [25] 25 LIMA, E. A. et al. A fast and sensitive flow-batch method with hydride generating and atomic fluorescence spectrometric detection for automated inorganic antimony speciation in waters. Talanta, v. 207, n. February 2019, p. 119834, 2020.
  • [26] 26 TÓTOLI, E. G.; SALGADO, H. R. N. Miniaturized turbidimetric assay: A green option for the analysis of besifloxacin in ophthalmic suspension. Talanta, v. 209, n. October 2019, p. 120532, 2020.
  • [27] 27 DE OLIVEIRA, L. M. A. et al. An environment-friendly spot test method with digital imaging for the micro-titration of citric fruits. Talanta, v. 206, n. July 2019, p. 120219, 2020.
  • [28] 28 FERREIRA, H. S. et al. Characterisation of the mineral composition of tobacco products (cigar, shredded and rope). Microchemical Journal, v. 151, n. June, p. 104196, 2019.
  • [29] 29 BRASIL, M. A. S.; REIS, B. F. An automated multicommuted flow analysis procedure for photometric determination of reducing sugars in wine employing a directly heated flow-batch device. Journal of the Brazilian Chemical Society, v. 28, n. 10, p. 2013–2020, 2017.
  • [30] 30 ALESSIO, K. O. et al. Infrared thermal imaging combined with paper microzone plates and natural reagent extracts for simple, fast, and green enthalpimetric analysis. Talanta, v. 204, n. January, p. 266–271, 2019.
  • [31] 31 VOSS, M. et al. Feasibility of paper microzone plates for greener determination of the alcoholic content of beverages by thermal infrared enthalpimetry. Analytical Methods, v. 11, n. 39, p. 4983–4990, 2019.
  • [32] 32 LIMA, M. J. A.; REIS, B. F. Photogeneration of silver nanoparticles induced by UV radiation and their use as a sensor for the determination of chloride in fuel ethanol using a flow-batch system. Talanta, v. 201, n. January, p. 373–378, 2019.
  • [33] 33 NERI, T. S. et al. Highly sensitive procedure for determination of Cu(II) by GF AAS using single-drop microextraction. Microchemical Journal, v. 147, n. October 2018, p. 894–898, 2019.
  • [34] 34 PEREIRA, R. M. et al. Multitechnique determination of metals and non-metals in sports supplements after microwave-assisted digestion using diluted acid. Microchemical Journal, v. 145, n. October 2018, p. 235–241, 2019.
  • [35] 35 LIMA, M. J. A.; KAMOGAWA, M. Y.; REIS, B. F. A new sensitive photometric procedure for the determination of sulfate in fuel ethanol without sample preparation exploiting a flow-batch strategy. Microchemical Journal, v. 145, n. November 2018, p. 921–926, 2019.
  • [36] 36 LAGO, A. C. DO et al. Determination of Uranium in Environmental Water by Flow Injection Analysis using a Hybrid-Imprinted Polymer. Analytical Letters, v. 48, n. 17, p. 2739–2753, 2015.
  • [37] 37 MULLER, A. L. H. et al. Microwave-assisted digestion using diluted acids for toxic element determination in medicinal plants by ICP-MS in compliance with United States pharmacopeia requirements. Analytical Methods, v. 7, n. 12, p. 5218–5225, 2015.
  • [38] 38 LIMA, M. B. et al. In-line single-phase extraction for direct determination of total iron in oils using CdTe quantum dots and a flow-batch system. Analytical Methods, v. 7, n. 18, p. 7707–7714, 2015.
  • [39] 39 BEZERRA DOS SANTOS, V. et al. A versatile and robust electrochemical flow cell with a boron-doped diamond electrode for simultaneous determination of Zn2+ and Pb2+ ions in water samples. Analytical Methods, v. 6, n. 21, p. 8526–8534, 2014.
  • [40] 40 BATISTA, A. D.; ROCHA, F. R. P. A green flow-injection procedure for fluorimetric determination of bisphenol A in tap waters based on the inclusion complex with β-cyclodextrin. International Journal of Environmental Analytical Chemistry, v. 93, n. 13, p. 1402–1412, 2013.
  • [41] 41 DE JESUS, A. et al. Determination of mercury in naphtha and petroleum condensate by photochemical vapor generation atomic absorption spectrometry. Microchemical Journal, v. 110, p. 227–232, 2013.
  • [42] 42 NÓBREGA, L. N. N.; MAGALHÃES, L. DE O.; FONSECA, A. A urethane-acrylate microflow-analyzer with an integrated cadmium column. Microchemical Journal, v. 110, p. 553–557, 2013.
  • [43] 43 BRONDI, A. M. et al. A Single FIA system coupled with reduction and distillation processes for the determination of sulfate ion by spectrophotometry. Analytical Sciences, v. 29, n. 5, p. 559–562, 2013.
  • [44] 44 ROCHA, D. L.; ROCHA, F. R. P. An environmentally friendly flow-based procedure with photo-induced oxidation for the spectrophotometric determination of chloride in urine and waters. Microchemical Journal, v. 108, p. 193–197, 2013.
  • [45] 45 PEREIRA, A. C.; ROCHA, F. R. P. A multicommuted flow system with liquid-liquid microextraction for determination of anionic surfactants in freshwaters. Analytical Methods, v. 5, n. 8, p. 2104–2109, 2013.
  • [46] 46 LIMA, M. B. et al. A digital image-based micro-flow-batch analyzer. Microchemical Journal, v. 106, p. 238–243, 2013.
  • [47] 47 PICOLOTO, R. S. et al. Mercury determination in soil by CVG-ICP-MS after volatilization using microwave-induced combustion. Analytical Methods, v. 4, n. 3, p. 630–636, 2012.
  • [48] 48 ULIANA, C. V.; TOGNOLLI, J. O.; YAMANAKA, H. Application of factorial design experiments to the development of a disposable amperometric DNA biosensor. Electroanalysis, v. 23, n. 11, p. 2607–2615, 2011.
  • [49] 49 MONTE-FILHO, S. S. et al. Flow-batch miniaturization. Talanta, v. 86, n. 1, p. 208–213, 2011.
  • [50] 50 BIZZI, C. A. et al. Evaluation of oxygen pressurized microwave-assisted digestion of botanical materials using diluted nitric acid. Talanta, v. 83, n. 5, p. 1324–1328, 2011.
  • [51] 51 MELCHERT, W. R.; OLIVEIRA, D. R.; ROCHA, F. R. P. An environmentally friendly flow system for high-sensitivity spectrophotometric determination of free chlorine in natural waters. Microchemical Journal, v. 96, n. 1, p. 77–81, 2010.
  • [52] 52 BORGES, S. S. et al. Downscaling a multicommuted flow injection analysis system for the photometric determination of iodate in table salt. Analytica Chimica Acta, v. 668, n. 1, p. 3–7, 2010.
  • [53] 53 MELCHERT, W. R.; ROCHA, F. R. P. A greener and highly sensitive flow-based procedure for carbaryl determination exploiting long pathlength spectrophotometry and photochemical waste degradation. Talanta, v. 81, n. 1–2, p. 327–333, 2010.
  • [54] 54 SILVA, S. H. G. et al. Modeling and prediction of sulfuric acid digestion analyses data from pxrf spectrometry. Scientia Agricola, v. 77, n. 4, 2020.
  • [55] 55 GRASEL, F. S. et al. Principal component analysis of commercial tannin extracts using digital images on mobile devices. Journal of the Brazilian Chemical Society, v. 27, n. 12, p. 2372–2377, 12 jan. 2016.
  • [56] 56 RIBEIRO, F. C. P. et al. Detection oxidative degradation in lubricating oil under storage conditions using digital images and chemometrics. Microchemical Journal, v. 147, n. October 2018, p. 622–627, 2019.
  • [57] 57 GAGLIERI, C. et al. Is Thermogravimetry an efficient alternative to gas chromatography in degree of biodiesel conversion? Journal of Thermal Analysis and Calorimetry, v. 135, n. 4, p. 2591–2597, 2019.
  • [58] 58 SILVA, A. C. et al. Green chemistry method based on PARAFAC EEM data modeling for Benzo[a]pyrene quantitation in distilled spirit. Journal of the Brazilian Chemical Society, v. 30, n. 2, p. 398–405, 2019.
  • [59] 59 COSTA, G. B. et al. Digital image-based classification of biodiesel. Talanta, v. 139, p. 50–55, 2015.
  • [60] 60 TERRA, J. et al. Um método verde, rápido e simples para determinar o valor energético de farinhas e cereais matinais. Química Nova, v. 33, n. 5, p. 1098–1103, 2010.
  • [61] 61 CAMPOS, R. A. et al. Green speciation of iron using aqueous two-phase system. Anais da Academia Brasileira de Ciencias, v. 90, n. 2, p. 1929–1944, 2018.
  • [62] 62 KOGAWA, A. C.; VAN SCHEPDAEL, A.; SALGADO, H. R. N. Eco-friendly evaluation of rifaximin in tablets by capillary electrophoresis. Journal of Chromatographic Science, v. 57, n. 5, p. 476–483, 2019.
  • [63] 63 PEDROSO, T. M.; MEDEIROS, A. C. D.; SALGADO, H. R. N. RP-HPLC×HILIC chromatography for quantifying ertapenem sodium with a look at green chemistry. Talanta, v. 160, p. 745–753, 2016.
  • [64] 64 MILANI, M. I. et al. Development of a new clean methodology with ultrasound-assisted extraction for analysis of sodium in pet foods. Analytical Methods, v. 7, n. 6, p. 2433–2436, 2015.
  • [65] 65 VIEIRA, B. H. S. et al. Substituição do nitrobenzeno pelo óleo de soja como uma proposta para o ensino do método de Volhard em análise quantitativa. Quimica Nova, v. 40, n. 9, p. 1130–1135, 1 set. 2017.
  • [66] 66 FINAZZI, G. A. et al. Desenvolvimento de experimento didático de eletrogravimetria de baixo custo utilizando princípios da química verde. Quimica Nova, v. 39, n. 1, p. 112–117, 1 jan. 2016.
Como citar:

Leal Filho, Marcus Vinícius Amaral ; Korn, Maria das Graças Andrade ; Guarieiro, Lilian Lefol Nani ; "EVALUATION OF BRAZILIAN CONTRIBUTION TO THE SUSTAINABLE DEVELOPMENT GOALS THROUGH GREEN CHEMISTRY: A SYSTEMIC REVIEW", p. 959-967 . In: Anais do VI Simpósio Internacional de Inovação e Tecnologia. São Paulo: Blucher, 2020.
ISSN 2357-7592, ISBN: 2357-7592
DOI 10.5151/siintec2020-EVALUATIONOFBRAZILIAN

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações