Conference full papers - Open Access.

Idioma principal

Design, construction and validation of an all-terrain wheelchair in magnesium alloys

Design, construction and validation of an all-terrain wheelchair in magnesium alloys

Chacón Cifuentes, Paula Andrea ; Sevilla Cadavid, Gustavo Adolfo ; Zuleta Gil, Alejandro Alberto ; Valencia Escobar, Andrés Hernando ;

Conference full papers:

Magnesium alloys have an excellent strength-to-weight ratio and can be manufactured with a lower environmental impact. Although its application is attractive for wheelchair design, it is little explored. As a result of this work, an all-terrain wheelchair was designed, exhibiting a weight reduction of 32% compared to commercial products. Users performed usability tests, to evaluate the improvements achieved. This wheelchair can contribute to improving their quality of life, allowing users to save energy and preserve the health of their upper limbs. Finally, an impact was achieved in the local industry, developing capacities to manufacture products in these alloys.

Conference full papers:

Palavras-chave: Light alloys, assistive technology, usability, mobility, sustainability,

Palavras-chave:

DOI: 10.5151/sigradi2020-123

Referências bibliográficas
  • [1] Anes, V., Lage, Y. E., Vieira, M., Maia, N. M. M., Freitas, M., & Reis, L. (2016). Torsional and axial damping properties of the AZ31B-F magnesium alloy. Mechanical Systems and Signal Processing, 79, 112–122. https://doi.org/https://doi.org/10.1016/j.ymssp.2016.02.040
  • [2] Berrio-Betancur, L. F., Echeverry-Rendón, M., Correa-Bedoya, E., Zuleta-Gil, A. A., Robledo-Restrepo, S. M., Castaño- Gonzalez, J. G., & Echeverría-Echeverríaa, F. (2017). Development of the magnesium alloy industry in Colombia - an opportunity | Desarrollo de la industria de aleaciones de magnesio en Colombia - una oportunidad. DYNA (Colombia), 84(203). https://doi.org/10.15446/dyna.v84n203.66440
  • [3] Dassault Systèmes. (2016). Solid Works. Vélizy-Villacoublay, Francia.
  • [4] Flemmer, C. L., & Flemmer, R. C. (2016). A review of manual wheelchairs. Disability and Rehabilitation: Assistive Technology, 11(3), 177–187. https://doi.org/10.3109/17483107.2015.1099747
  • [5] Good Life Medical. (2018). Quickie GT. Retrieved June 10, 2018, from https://www.goodlifemedical.com.au/products/manual- wheelchairs/quickie-gt/
  • [6] GRIT Freedom Chair. (n.d.). GRIT Freedom Chair - All Terrain Wheelchair. Retrieved November 5, 2019, from https://www.gogrit.us/
  • [7] International Organization for Standardization. (2014). International Standard ISO 7176-1. Geneva: ISO. https://doi.org/10.1109/IEEESTD.2004288250
  • [8] International Organization for Standardization. (2015). International Standard ISO 7176- Geneva: ISO.
  • [9] Lasher Sport. (2017). Lasher Sport_ BT-Mg. Retrieved November 6, 2017, from http://www.lashersport.com/pages/chairs/btmg/btmg.html
  • [10] Liu, H., Cooper, R. A., Pearlman, J., & Connor, S. (2008). Evaluation of titanium ultralight manual wheelchairs using ANSI / RESNA standards. Journal of Rehabilitation Research & Development, 45(9), 1–20. https://doi.org/1682/JRRD.2007.12.0204
  • [11] Medola, F. O., Elui, V. M. C., Santana, C. D. S., & Fortulan, C. A. (2014). Aspects of Manual Wheelchair Configuration Affecting Mobility: A Review. Journal of Physical Therapy Science, 26, 313–318.
  • [12] Mountain Tirke. (2018). Mountain trike. Retrieved June 10, 2018, from http://www.mountaintrike.com/products/mountain- trike
  • [13] Polmear, I., StJohn, D., Nie, J.-F., & Qian, M. (2017). Light Alloys: Metalurgy of the Light Metals (5° Edición). Butterworth-Heinemann.
  • [14] Rispin, K., & Wee, J. (2015). Comparison between performances of three types of manual wheelchairs often distributed in low-resource settings. Disability and Rehabilitation: Assistive Technology, 10(4), 316–322.
  • [15] Rodrigues Carriel, I. R. (2015). Recomendações tecnológicas de projeto para o desenvolvimento de cadeira de rodas de propulsão manual: uma proposta para ampliar o grau de mobilidade dos cadeirantes a partir do design. Universidade de São Paulo.
  • [16] Trekinetic. (2018). Trekinetic K-2. Retrieved June 10, 2018, from http://www.trekinetic.com/K2.php
  • [17] Valencia Escobar, A. H. (2007). La estructura: un elemento técnico para el diseño (Primera Ed). Medellín: Editorial Universidad Pontificia Bolivariana.
  • [18] World Health Organization. (2011). Joint position paper on the provision of mobility devices in less-resourced settings: a step towards implementation of the Convention on the Rights of Persons with Disabilities (CRPD) related to personal mobility. Retrieved from https://www.who.int/disabilities/publications/technology/jpp_final.pdf
  • [19] You, S., Huang, Y., Kainer, K. U., & Hort, N. (2017). Recent research and developments on wrought magnesium alloys. Journal of Magnesium and Alloys, 5, 239–253. https://doi.org/10.1016/j.jma.2017.09.001
Como citar:

Chacón Cifuentes, Paula Andrea; Sevilla Cadavid, Gustavo Adolfo; Zuleta Gil, Alejandro Alberto; Valencia Escobar, Andrés Hernando; "Design, construction and validation of an all-terrain wheelchair in magnesium alloys", p. 912-917 . In: Congreso SIGraDi 2020. São Paulo: Blucher, 2020.
ISSN 2318-6968, DOI 10.5151/sigradi2020-123

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações