Setembro 2025 vol. 12 num. 1 - XXXII Simpósio Internacional de Engenharia

Trabalho completo - Open Access.

Idioma principal | Segundo idioma

Descarbonização de Motores Diesel Pesados: Análise Comparativa do Biodiesel e do Óleo Vegetal Hidrotratado (HVO) por meio de Modelagem Computacional e Validação Experimental

Decarbonization of Heavy-Duty Diesel Engines: Comparative Analysis of Biodiesel and Hydrotreated Vegetable Oil (HVO) through Computational Modeling and Experimental Validation

LISBOA, Fábio Cordeiro de ; MACHADO, Danilo Almeida ; FILHO, Guenther Carlos Krieger ;

Trabalho completo:

A descarbonização do transporte de veículos pesados a diesel é essencial para reduzir as emissões de gases de efeito estufa. Este estudo avalia a substituição do diesel mineral por biodiesel e óleo vegetal hidrotratado (HVO) por meio de um modelo computacional validado experimentalmente. O desempenho do motor com diesel puro, biodiesel, HVO e suas misturas foi analisado usando equações empíricas e termodinâmicas para estimar potência, consumo específico de combustível e emissões. A combustão foi modelada pela equação de Wiebe, enquanto abordagens quase-dimensionais e multizonas otimizaram o desempenho e o tempo de processamento. A formação de NOx foi estimada pelo mecanismo de Zeldovich e um modelo cinético detalhado. A validação experimental, realizada em dinamômetro e analisador de gases, demonstrou forte correlação com as simulações. Os resultados indicam perda de 11% na potência com biodiesel e 1% com HVO, aumento de 28% no consumo específico com biodiesel e redução de 2,6% com HVO. O biodiesel puro (B100) elevou as emissões de CO? em 14%, enquanto o HVO reduziu em 5%. As emissões de NOx diminuíram com HVO e aumentaram com B100. O HVO demonstrou ser mais adequado para motores calibrados para diesel mineral.

Trabalho completo:

The decarbonization of heavy-duty diesel transport is crucial to reducing greenhouse gas emissions. This study analyzes the replacement of fossil diesel with biodiesel and hydrotreated vegetable oil (HVO) using a computational model validated experimentally. Engine performance with pure diesel, biodiesel, HVO, and their blends were assessed using empirical and thermodynamic equations to estimate power, specific fuel consumption, and emissions. Combustion was modeled with the Wiebe equation, while quasi-dimensional and multi-zone approaches optimized performance and processing time. NOx formation was estimated via the Zeldovich mechanism and a detailed kinetic model. Experimental validation on a dynamometer and gas analyzer showed strong agreement with simulations. Results indicate an 11% power loss with biodiesel and 1% with HVO, a 28% rise in fuel consumption with biodiesel, and a 2.6% drop with HVO. B100 increased CO? emissions by 14%, while HVO reduced them by 5%. NOx emissions fell significantly with HVO and rose with B100. HVO proved more suitable for engines calibrated for fossil diesel.

Palavras-chave: -,

Palavras-chave: -,

DOI: 10.5151/simea2025-PAP84

Referências bibliográficas
  • [1] Demirbas A. Progress and recent trends in biodiesel fuels. Energy Convers Manag. 2009; 50(1):14–34.
  • [2] Cardone M, Prati MV, Rocco V, Seggiani M, Senatore A, Vitolo S. Brassica carinata as an alternative oil crop for the production of biodiesel in Italy: engine performance and regulated and unregulated exhaust emissions. Environ Sci Technol. 2002; 36(21):4656–6
  • [3] Di Y, Cheung CS, Huang Z. Experimental investigation on regulated and unregulated emissions of a diesel engine fueled with ultra-low sulfur diesel fuel blended with biodiesel from waste cooking oil. Science of the total environment. 2009; 407(2):835–46.
  • [4] Hossain AK, Davies PA. Plant oils as fuels for compression ignition engines: A technical review and life-cycle analysis. Renew Energy. 2010; 35(1):1–13.
  • [5] Janaun J, Ellis N. Perspectives on biodiesel as a sustainable fuel. Renewable and Sustainable Energy Reviews. 2010; 14(4):1312–20.
  • [6] Xue J, Grift TE, Hansen AC. Effect of biodiesel on engine performances and emissions. Renewable and Sustainable energy reviews. 2011; 15(2):1098–11
  • [7] Agarwal AK, Bijwe J, Das LM. Effect of biodiesel utilization of wear of vital parts in compression ignition engine. J Eng Gas Power Turbines. 2003; 125(2):604–11.
  • [8] Reksowardojo IK, Dung NN, Tuyen TQ, Sopheak R, Brodjonegoro TP, Soerwidjaja TH, et al. The comparison the effect of biodiesel fuel from palm oil and physic nut oil (Jatropha curcas) on an direct injection (DI) diesel engine. In: Proceedings of FISITA 2006 conference in Yokohama, Japan. 2006.
  • [9] Fontaras G, Karavalakis G, Kousoulidou M, Tzamkiozis T, Ntziachristos L, Bakeas E, et al. Effects of biodiesel on passenger car fuel consumption, regulated and non-regulated pollutant emissions over legislated and real-world driving cycles. Fuel. 2009; 88(9):1608–17.
  • [10] Ng JH, Ng HK, Gan S. Advances in biodiesel fuel for application in compression ignition engines. Clean Technology Environ Policy. 2010; 12:459–93.
  • [11] Bohl T, Tian G, Smallbone A, Roskilly AP. Macroscopic spray characteristics of next-generation bio-derived diesel fuels in comparison to mineral diesel. Appl Energy. January 2017; 186:562–73.
  • [12] Shepel O, Matijošius J, Rimkus A, Duda K, Mikulski M. Research of Parameters of a Compression Ignition Engine Using Various Fuel Mixtures of Hydrotreated Vegetable Oil (HVO) and Fatty Acid Esters (FAE). Energies (Basel). May 25, 2021; 14(11):3077.
  • [13] Tan SM, Ng HK, Gan S. Numerical Studies of In-Cylinder Combustion and Soot Emission Characteristics of Biodiesel Fuels from Different Feedstock. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences. April 24, 2020; 70(1):46–61.
  • [14] Ray SC, Safiullah, Naito S, Andersson M, Nishida K, Ogata Y. Characterization of diesel spray with novel high-speed laser absorption scattering technique under diesel engine-like condition. Int J Heat Mass Transf. 2024 May;222:125103.
  • [15] Ayad SMME, Zanella IZ, de Brito CHG, Torres ER, Belchior CRP, de Oliveira PL, et al. Study on the effects of micro-addition of hydrogen in diesel combustion in an optically accessible engine. Int J Hydrogen Energy. July 2024; 75:363–87.
  • [16] Pal MK, Bhagwat A. Modification of a multihole injector to a single-hole injector and spray characteristics of the modified injector by two different imaging techniques. Journal of Flow Visualization and Image Processing. 2023; 30(4):117–35.
  • [17] Tinchon A, Foucher F, Doradoux L. Hydrogen Jet Characterization of an Internal Combustion Engine Injector Using Schlieren Imaging. In 2023.
  • [18] Herbinet O, Pitz WJ, Westbrook CK. Detailed chemical kinetic oxidation mechanism for a biodiesel surrogate. Combust Flame. August 2008; 154(3):507–28. AEA – Brazilian Society of Automotive Engineering - SIMEA 2025 6
  • [19] Herbinet O, Pitz WJ, Westbrook CK. Detailed chemical kinetic mechanism for the oxidation of biodiesel fuels blend surrogate. Combust Flame. May 2010; 157(5):893–908.
  • [20] Pei Y, Mehl M, Liu W, Lu T, Pitz WJ, Som S. A multicomponent blend as a diesel fuel surrogate for compression ignition engine applications. J Eng Gas Turbine Power. 2015; 137(11):11150.2
  • [21] Curran HJ, Gaffuri P, Pitz WJ, Westbrook CK. A comprehensive modeling study of n-heptane oxidation. Combust Flame. 1998; 114(1–2):149–77.
  • [22] Lisboa F, Wohlgemuth J, Lima de Oliveira N. Assessment of Emissions and Fuel Consumption in Heavy Trucks: Implications of Biodiesel Blending in Brazil's Fleet. In: Procceedings of the 20th Brazilian Congress of Thermal Sciences and Engineering. ABCM; 2024.
Como citar:

LISBOA, Fábio Cordeiro de; MACHADO, Danilo Almeida; FILHO, Guenther Carlos Krieger; "Descarbonização de Motores Diesel Pesados: Análise Comparativa do Biodiesel e do Óleo Vegetal Hidrotratado (HVO) por meio de Modelagem Computacional e Validação Experimental", p. 411-416 . In: Anais do XXXII Simpósio Internacional de Engenharia. São Paulo: Blucher, 2025.
ISSN 2357-7592, DOI 10.5151/simea2025-PAP84

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações