Conference full papers - Open Access.

Idioma principal

Bioinformed Design of Dynamic Tensegrity Units

Bioinformed Design of Dynamic Tensegrity Units

Castro-Arenas, Cristhian; Miralles, Mónica;

Conference full papers:

This paper presents the bioinformed design of tensegrities based in the application of configurative logics of biotensegrities. Its purpose is to accomplish dynamic tensegrities, potentially applicable in the design of innovative technological devices. This article presents the analysis and design of three types of models: a) the Universal Tensegrity Joints introduced by Fuller, b) the Abstract Dynamic Units, and c) Bioinformed Dynamic Units. The methodology is based on simulating movements with parametric modeling in Rhinoceros software, with the usage of Grasshopper and Kangaroo plugins. Thus, a first classification of UDAs and the first phase of UDB models for leg and shoulder were obtained.

Conference full papers:

Palavras-chave: Tensegrity, Biotensegrity, Bioinformed, Parametric, Design,


DOI: 10.5151/sigradi2020-118

Referências bibliográficas
  • [1] ldrich, J. B., Skelton, R. E., & Kreutz-Delgado, K. (2003, June). Control synthesis for a class of light and agile robotic tensegrity structures. In Proceedings of the 2003 American Control Conference, 2003. (Vol. 6, pp. 5245-5251). IEEE.
  • [2] Castro-Arenas, Ghersi, Borsoi, & Miralles (2017). Platonic Tensegrities: dynamic aspects and characterization. In VII Latin American Congress on Biomedical Engineering CLAIB 2016, Bucaramanga, Santander, Colombia, October 26th- 28th, 2016 (pp. 264-267). Springer, Singapore.
  • [3] Cretu, S. M. (2009). Tensegrity Concept–From Natural Systems to Robots. In Proceedings of EUCOMES 08 (pp. 549-557). Springer, Dordrecht.
  • [4] Cretu, S. M. (2011). Innovative design in tensegrity field. Procedia Engineering, 9, 261-269.
  • [5] Emmerich, D. G. (1992). Stable Simplex. An introduction to the resistance of formes. In Proceedings of the First International Seminar on Structural Morphology, Montpellier.
  • [6] Friesen, J., Pogue, A., Bewley, T., de Oliveira, M., Skelton, R., & Sunspiral, V. (2014, May). DuCTT: A tensegrity robot for exploring duct systems. In 2014 IEEE International Conference on Robotics and Automation (ICRA) (pp. 4222- 4228). IEEE.
  • [7] Fuller, B. R., & Applewhite, E. J. (1975). Synergetics: explorations in the geometry of thinking. Charles Scribner's Sons, New York, 876.
  • [8] Fuller, B. (1961). Tensegrity. Portfolio Artnews Annual, 4, 112-127.
  • [9] González, A., & Luo, A. (2019, June). Design and Control of a Tensegrity-Based Robotic Joint. In IFToMM World Congress on Mechanism and Machine Science (pp. 2631-2640). Springer, Cham.
  • [10] Hensel, M., & Menges, A. (2008). Designing Morpho‑Ecologies: Versatility and Vicissitude of Heterogeneous Space. Architectural Design, 78(2), 102-111.
  • [11] Ingber, D. E. (1993). Cellular tensegrity: defining new rules of biological design that govern the cytoskeleton. Journal of cell science, 104(3), 613-627.
  • [12] Ingber, D. E. (1998). The architecture of life. Scientific American, 278(1), 48-5 n7.
  • [13] Ingber, D. E. (2003). Tensegrity I. Cell structure and hierarchical systems biology. Journal of cell science, 116(7), 1157-1173. Accesible en
  • [14] Ingber, D. E. (2018). Tensegrity as the architecture of life. In Proceedings of IASS Annual Symposia (Vol. 2018, No. 27, pp. 1-4). International Association for Shell and Spatial Structures (IASS).
  • [15] Iouguina, A., Dawson, J. W., Hallgrimsson, B., & Smart, G. (2014). Biologically informed disciplines: A comparative analysis of bionics, biomimetics, biomimicry, and bio-inspiration among others. International Journal of Design & Nature and Ecodynamics, 9(3), 197-205.
  • [16] Jung, E., Ly, V., Cessna, N., Ngo, M. L., Castro, D., SunSpiral, V., & Teodorescu, M. (2018). Bio-inspired tensegrity flexural joints. In 2018 IEEE International Conference on Robotics and Automation (ICRA) (pp. 1-6). IEEE.
  • [17] Khazanov, M., Humphreys, B., Keat, W., & Rieffel, J. (2013, September). Exploiting dynamical complexity in a physical tensegrity robot to achieve locomotion. In Artificial Life Conference Proceedings 13 (pp. 965-972). One Rogers Street, Cambridge, MA 02142-1209 USA [email protected] mit. edu: MIT Press.
  • [18] Lessard, S., Bruce, J., Jung, E., Teodorescu, M., SunSpiral, V., & Agogino, A. (2016, May). A lightweight, multi-axis compliant tensegrity joint. In 2016 IEEE International Conference on Robotics and Automation (ICRA) (pp. 630-635). IEEE.
  • [19] Levin, S.M., (1982) Continuous Tension, Discontinuous Compression. A Model for Biomechanical Support of the Body. Bulletin of Structural Integration, Rolf Institute, Bolder. pp.31- 33.
  • [20] Levin S.M., (1991) Primordial Structure. Proc. vol 2, 34th An.Meet. Int. Soc. Syst. Sci., Portland.
  • [21] Levin, S.M., (2006) Tensegrity, The New Biomechanics Textbook of Musculoskeletal Medicine ed. Hutson M & Ellis R (Oxford: Oxford University Press) pp 69 – 80.
  • [22] Motro, R. (2003). Tensegrity: structural systems for the future. Elsevier.
  • [23] Pajunen, K. M. (2020). Dynamics of Lightweight Tensegrity- Inspired Metamaterials Fabricated with 3D-Printing (Doctoral dissertation, California Institute of Technology).
  • [24] Reissig, P. (2012). Tecno-morfología como estrategia de diseño. Tesis Doctoral defendida en 2012, Publicado por el Instituto de la Espacialidad Humana, FADU, Universidad de Buenos Aires, ISBN: 978950-29-1795-5.
  • [25] Rimoli, J. J., & Pal, R. K. (2017). Mechanical response of 3- dimensional tensegrity lattices. Composites Part B: Engineering, 115, 30-42.
  • [26] Scarr, G. (2014). Biotensegrity. Handspring Publishing, United Kingdom.
  • [27] Skelton, R. E., Helton, W. J., & Adhikari, R. (1998). Mechanics of Tensegrity Beams, UCSD, Structural Systems & Contr. Lab., Rep, (1998).
  • [28] Skelton, R. (2005). Dynamics and control of tensegrity systems. In IUTAM symposium on vibration control of nonlinear mechanisms and structures (pp. 309-318). Springer, Dordrecht.
  • [29] Swanson, R. L. (2013). Biotensegrity: a unifying theory of biological architecture with applications to osteopathic practice, education, and research—a review and analysis. The Journal of the American Osteopathic Association, 113(1), 34- 52.
  • [30] SunSpiral V., Agogino A., & Atkinson D. (2015) Super Ball Bot - Structures for Planetary Landing and Exploration, NIAC Phase 2 - Final Report. NASA Innovative Advanced Concepts (NIAC) Program. NASA Ames Research Center. Intelligent Systems Division. Recuperado de NASA Technical Report Server (NTRS)
Como citar:

Castro-Arenas, Cristhian; Miralles, Mónica; "Bioinformed Design of Dynamic Tensegrity Units", p. 870-877 . In: Congreso SIGraDi 2020. São Paulo: Blucher, 2020.
ISSN 2318-6968, DOI 10.5151/sigradi2020-118

últimos 30 dias | último ano | desde a publicação