Literature Review - Open Access.

Idioma principal | Segundo idioma

AVALIAÇÃO DO POTENCIAL DE APLICAÇÃO DE RESÍDUOS DE MÁRMORE E FIBRAS SINTÉTICAS PARA O DESENVOLVIMENTO DE PISOS ATRAVÉS DA ANÁLISE DE PATENTES

EVALUATION OF MARBLE RESIDUES AND SYNTHETIC FIBERS APPLICATION POTENTIAL FOR THE DEVELOPMENT OF FLOORS THROUGH THE ANALYSIS OF PATENTS

Araujo, Daniel ; Azevedo, Joyce B. ; Barbosa, Josiane D. V. ; Mello, Pollyana da S. ; Machado, Bruna A. S. ; Lazarus, Benjamin S. ;

Literature Review:

O conceito de economia circular propõe que os resíduos industriais sejam utilizados como matéria-prima para a fabricação de novos produtos que reduzam o impacto ambiental e estimulem o crescimento econômico. Assim, muitos estudos científicos e patentes têm como objetivo aproveitar as vantagens de diferentes compostos residuais no desenvolvimento de novos materiais compostos. O objetivo deste estudo é avaliar o potencial da utilização de mármore e fibras sintéticas para o desenvolvimento de novos materiais por meio da análise de documentos de patentes depositados em todo o mundo. Analisamos documentos prospectivos no banco de dados do Derwent Innovation Index. Um total de 129 documentos relacionados à área de pesquisa de interesse foi identificado entre 1958 e 2019. O setor de construção teve um maior número total de patentes e patentes ativas em relação ao setor industrial com foco em aplicações estruturais, antimicrobianas e de cobertura. Japão, Estados Unidos e Coréia do Sul foram os países que mais depositaram patentes relacionadas ao tema de pesquisa.

Literature Review:

The concept of a circular economy proposes that industrial waste be used as raw material for making new products to reduce the environmental impact and stimulate economic growth. Thus, many scientific studies and patents have aimed to take advantage of different waste compounds in the development of new composite materials. The goal of this study is to assess the potential for using marble and synthetic fibers for the development of new materials through the analysis of patent documents filed worldwide. We analyzed prospective documents in the Derwent Innovation Index database. A total of 129 documents related to the research area of interest was identified between 1958 and 2019. The construction sector had a higher total number of patents and active patents relative to the industrial sector with a focus on structural, antimicrobial, and covering applications. Japan, the United States, and South Korea were the countries that filed the most patents related to the research topic.

Palavras-chave: Compósito; Fibra sintética, Mármore; Piso; Prospecção tecnológica,

Palavras-chave: Composite; Synthetic fiber; Marble; Floor; Technological prospecting,

DOI: 10.5151/siintec2021-202744

Referências bibliográficas
  • [1] " Gomes, V. R., Babisk, M. P., Vieira, C. M. F., Sampaio, J. A., Vidal, F. W. H., & Gadioli, M. C. B. Ornamental stone wastes as an alternate raw material for soda-lime glass manufacturing. Materials Letters. 2020. 127579.
  • [2] Yurdakul, M. Natural stone waste generation from the perspective of natural stone processing plants: An industrial-scale case study in the province of Bilecik, Turkey. Journal of Cleaner Production. 2020. 276, 123339.
  • [3] ABIROCHAS. XXX World Marble and Stones Report 2019 - Dossier Brazil 2019. Brazilian Ornamental Stone Industry Association. Available online: https://www.abirochas.com.br/wp-content/uploads/2018/06/dossie/Dossier_Brazil_2019%20mailing.pdf. (accessed on 13/04/2020).
  • [4] Awad, AH, El-Gamasy R, Abd El-Wahab AA, Abdellatif MH. Assessment of mechanical properties of HDPE composite with addition of marble and granite dust. Ain Shams Engineering Journal. 2020
  • [5] Çınar, ME, Kar, F. Characterization of composite produced from waste PET and marble dust. Construction and Building Materials. 2018, 163, 734-741.
  • [6] Pappu, A, Thakur, VK, Patidar, R, Asolekar, SR., Saxena, M. Recycling marble wastes and Jarosite wastes into sustainable hybrid composite materials and validation through Response Surface Methodology. Journal of Cleaner Production. 2019, 240, 118249.
  • [7] Bilal, M., Khan, KIA, Thaheem, MJ, Nasir, AR. Current state and barriers to the circular economy in the building sector: Towards a mitigation framework. Journal of Cleaner Production, 2020, 123250.
  • [8] Zhou, Y, Stanchev, P, Katsou, E, Awad, S, Fan, M. A circular economy use of recovered sludge cellulose in wood plastic composite production: Recycling and eco-efficiency assessment. Waste Management. 2019, 99, 42-4
  • [9] Meyers, M. A., & Chawla, K. K Mechanical behavior of materials. Cambridge university press. 2008.
  • [10] Lin, A, Tan, YK, Wang, CH., Kua, HW., Taylor, H. Utilization of Waste Materials in a Novel Mortar–Polymer Laminar Composite to be Applied in Construction 3D-Printing. Composite Structures. 2020, 112764.
  • [11] Seco, A, Echeverría, AM, Marcelino, S, García, B, Espuelas, S. Durability of polyester polymer concretes based on metallurgical wastes for the manufacture of construction and building products. Construction and Building Materials. 2020, 240, 117907.
  • [12] Hameed, AM, Hamza, MT. Characteristics of polymer concrete produced from wasted construction materials. Energy Procedia, 2019, 157, 43-50.
  • [13] Khan, MZR, Srivastava, SK, Gupta, M. K. A state-of-the-art review on particulate wood polymer composites: Processing, properties and applications. Polymer Testing. 2020, 106721.
  • [14] Sormunen, P, Kärki, T. Recycled construction and demolition waste as a possible source of materials for composite manufacturing. Journal of Building Engineering, 2019, 24, 100742.
  • [15] Fares, G., Albaroud, M. H., & Khan, M. I. Fine limestone dust from ornamental stone factories: a potential filler in the production of High-Performance Hybrid Fiber-Reinforced Concrete. Construction and Building Materials. 2020. 262, 120009.
  • [16] Almada, B. S., de Souza Melo, L., Dutra, J. B., Bubani, L. C., Silva, G. J. B., dos Santos, W. J., & Aguilar, M. T. P. Influence of the heterogeneity of waste from wet processing of ornamental stones on the performance of Portland cement composites. Construction and Building Materials. 2020. 262, 120036.
  • [17] Simão, L., Hotza, D., Ribeiro, M. J., Novais, R. M., Montedo, O. R. K., & Raupp-Pereira, F. Development of new geopolymers based on stone cutting waste. Construction and Building Materials. 2020. 119525.
  • [18] Barros, M. M., de Oliveira, M. F. L., da Conceição Ribeiro, R. C., Bastos, D. C., & de Oliveira, M. G. Ecological bricks from dimension stone waste and polyester resin. Construction and Building Materials. 2020. 232, 117252.
  • [19] Sahu, R., Gupta, M. K., Chaturvedi, R., Tripaliya, S. S., & Pappu, A. Moisture resistant stones waste based polymer composites with enhanced dielectric constant and flexural strength. Composites Part B: Engineering. 2020. 182, 107656.
  • [20] Yang X, Yu X, Liu X. Obtaining a Sustainable Competitive Advantage from Patent Information: A Patent Analysis of the Graphene Industry. Sustainability. 2018. 10(12):1–25.
  • [21] Cho, HP, Lim, H, Lee, D, Cho, H, Kang, KI. Patent analysis for forecasting promising technology in high-rise building construction. Technological Forecasting and Social Change, 2018, 128, 144-153.
  • [22] Trippe, A. Guidelines for preparing patent landscape reports. Patent landscape reports. Geneva: WIPO, 2015.
  • [23] Biswal, S., Pahlevani, F., Sahajwalla, V. Wastes as resources in steelmaking industry-current trend. Current Opinion in Green and Sustainable Chemistry. 2020. 100377.
  • [24] Li, J., Lin, Y., Wang, F., Shi, J., Sun, J., Ban, B., Chen, J. Progress in recovery and recycling of kerf loss silicon waste in photovoltaic industry. Separation and Purification Technology. 2020. 254, 117581.
  • [25] Liu, C., Zhang, Q., & Wang, H. Cost-benefit analysis of waste photovoltaic module recycling in China. Waste Management. 2020. 118, 491-500.
  • [26] Valerio, O., Muthuraj, R., Codou, A. Strategies for polymer to polymer recycling from waste: current trends and opportunities for improving the circular economy of polymers in South America. Current Opinion in Green and Sustainable Chemistry. 2020. 100381.
  • [27] Lu, Y., Nakicenovic, N., Visbeck, M., & Stevance, A. S. Policy: Five priorities for the UN sustainable development goals. Nature. 2015. 520(7548), 432-433.
  • [28] Packaged, D. R. Laminated constructions. US3111569A, 1963.
  • [29] Toyoda M, Horishima T, Sugimoto K, Aoyama K. Method for making a decorative plate used in a building. US4213926A, 1980.
  • [30] Wang, X, Peng, Z, Wu, Z, Sun, S. High-performance composite bridge deck with prestressed basalt fiber-reinforced polymer shell and concrete. Engineering Structures, 2019, 201, 109852.
  • [31] Li, YM, Hu, SL, Wang, DY. Polymer-based ceramifiable composites for flame retardant applications: A review. Composites Communications, 2020, 100405.
  • [32] Huang, H, Pang, H, Huang, J, Zhao, H, Liao, B. Synthesis and characterization of ground glass fiber reinforced polyurethane-based polymer concrete as a cementitious runway repair material. Construction and Building Materials, 242, 2020, 117221.
  • [33] Lee, K, Kim, D, Chang, SH, Choi, SW, Park, B, Lee, C. Numerical approach to assessing the contact characteristics of a polymer-based waterproof membrane. Tunnelling and Underground Space Technology, 2018, 79, 242-249.
  • [34] Tunc, ET. Recycling of marble waste: A review based on strength of concrete containing marble waste. Journal of environmental management, 2019, 231, 86-97.
  • [35] Bostanci, SC. Use of waste marble dust and recycled glass for sustainable concrete production. Journal of Cleaner Production, 2020, 251, 119785.
  • [36] Bhattacharyya, Suvanjan, et al. ""A novel CFD analysis to minimize the spread of COVID-19 virus in hospital isolation room. Chaos, Solitons & Fractals. 2020, 110294.
  • [37] Rendana, M. Impact of the wind conditions on COVID-19 pandemic: A new insight for direction of the spread of the virus. Urban climate. 2020, 34, 100680.
  • [38] Muralidharan, S. K., Bauman, L., Anderson, W. A., & Zhao, B. Recyclable antimicrobial sulphonated poly (ether ether ketone)–copper films: Flat vs micro-pillared surfaces. Materials Today Communications. 2020. 25, 101485.
  • [39] Venkatesan, R., Zhang, Y., & Chen, G. Preparation of poly (butylene adipate-co-terephthalate)/ZnSnO3 composites with enhanced antimicrobial activity. Composites Communications. 2020. 100469.
  • [40] Pontin, K. P., Borges, K. A., Furian, T. Q., Carvalho, D., Wilsmann, D. E., Cardoso, H. R. P., ... & do Nascimento, V. P. Antimicrobial activity of copper surfaces against biofilm formation by Salmonella Enteritidis and its potential application in the poultry industry. Food Microbiology.2020, 103645.
  • [41] Yang, Y. C., Mei, X. W., Hu, Y. J., Su, L. Y., Bian, J., Li, M. F., ... & Sun, R. C. Fabrication of antimicrobial composite films based on xylan from pulping process for food packaging. International journal of biological macromolecules. 2019, 134, 122-130.
  • [42] Gutsanu, V., & Lisa, G. Composites containing metal and thiosemicarbazone: thermal, antimicrobial and antifungal properties. Polyhedron. 2020, 114800.
  • [43] WIPO - World Intellectual Property Organization. World Intellectual Property Indicators [Internet]. 2019. Available online: http://wwwwipoint/export/sites/www/freepublications/en/ intproperty/941/wipo_pub_941_2013pdf, 2019. (accessed on 01/07/2020).
  • [44] Baroux, D. Method for forming melt-resistant glass fiber product, and associated apparatus. US10329195B2. United States. 2014
  • [45] Coe, W. B. Pavement repair system. US9057163B1. United States. 2014.
  • [46] Krishnan, V. Antimicrobial and antistatic polymers and methods of using such polymers on various substrates. JP2012035628A. Japan. 2011.
  • [47] Fan, W. W., Langford, N. P., Fischer Jr, R. M., & Barnes, A. S. Stain resistant polyurethane coatings. US8030430B2. United States. 2004.
  • [48] Bordin, R., Milis, M., & Hellemans, P. Fiber cement decking products and methods for the production thereof. US20190330107A1. United States. 2018.
  • [49] Takuya, Y., Kojiro K., Seiichi O. Heat insulating structure. JP2010216223A. Japan. 2009.
  • [50] Yamada K. MAT. European Patent Office. EP2735251B1. 2012.
  • [51] Caregnato, L. Method for producing a continuous waterproofing flooring. EP1573148A1. European Patent Office. 2003.
  • [52] Saint- Gobain Weber. Covering tile. JP05749425B2. Japan. 2015.
  • [53] Kanmukhla, V. Trinder Li, K. G. Solid Surfaces and antimicrobial treatments and processes for prepare the same. AU2013299616A1. Australia. 2013.
Como citar:

Araujo, Daniel; Azevedo, Joyce B.; Barbosa, Josiane D. V.; Mello, Pollyana da S.; Machado, Bruna A. S.; Lazarus, Benjamin S.; "AVALIAÇÃO DO POTENCIAL DE APLICAÇÃO DE RESÍDUOS DE MÁRMORE E FIBRAS SINTÉTICAS PARA O DESENVOLVIMENTO DE PISOS ATRAVÉS DA ANÁLISE DE PATENTES", p. 53-63 . In: VII International Symposium on Innovation and Technology. São Paulo: Blucher, 2021.
ISSN 2357-7592, DOI 10.5151/siintec2021-202744

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações