Conference full papers - Open Access.

Idioma principal

Automating Concrete Construction: Sustainable social housing in Colombia

Automating Concrete Construction: Sustainable social housing in Colombia

Costa, Eduardo; Shepherd, Paul; Velasco, Rodrigo; Hudson, Roland;

Conference full papers:

The construction industry is a major source of carbon, and the main culprit is concrete. In addition, productivity for the construction sector is poor, and concrete construction in particular is labour intensive, slow, and costly. This paper introduces ongoing research addressing these two fundamental issues. First, by developing an integrated framework for automating manufacturing of reinforced concrete building elements through computation and robotic technology, and second by adapting such framework to the specific technical and socio- economic contexts of Colombian construction, specifically for social housing.

Conference full papers:

Palavras-chave: non-prismatic concrete elements, reinforced concrete, flexible formwork, parametric modelling, construction in Colombia,

Palavras-chave:

DOI: 10.5151/sigradi2020-35

Referências bibliográficas
  • [1] Barbosa, F., Woetzel, J., Mischke, J., Ribeirinho, M. J., Sridhar, M., Parsons, M., Bertram, N., & Brown, S. (2017). Reinventing Construction.
  • [2] Bauchau, O. A., & Craig, J. I. (2009). Euler-Bernoulli beam theory (pp. 173–221). https://doi.org/10.1007/978-90-481-2516- 6_5
  • [3] Bell, J. G. (2019). “En Colombia se deben construir 3,2 millones de vivienda en la siguiente década”, Camacol. Editorial La República. https://www.larepublica.co/economia/colombia- se-deben-construir-32-millones-de-vivienda-en-la- siguiente-decada-camacol-2902162
  • [4] CAMACOL. (2020). Coordenada Urbana: Actividad Edificadora - Segmento Residencial y No Residencial. In Informe de coyuntura Marzo de 2020.
  • [5] CAMACOL, & McKinsey Global Institute. (2017). Una apuesta en construcción: mayor productividad, menores riesgos. In Congreso Colombiano de la Construcción 2017. https://camacol.co/sites/default/files/McKinsey Global Institute_0.pdf
  • [6] Carrillo León, J., Echeverri Quintero, F., & Aperador Chaparro, W. (2015). Evaluación de los costos de construcción de sistemas estructurales para viviendas de baja altura y de interés social. Ingeniería, Investigación y Tecnología, 16(4), 479–490. https://doi.org/10.1016/j.riit.2015.09.001
  • [7] Departamento Administrativo Nacional de Estadística. (2017). Boletín Técnico, Censo de Edificaciones I Trimestre de 201
  • [8] https://www.dane.gov.co/files/investigaciones/boletines/ce ed/bol_ceed_Itrim17.pdf
  • [9] Departamento Administrativo Nacional de Estadística. (2020a). Estadísticas de concreto premezclado (EC). https://www.dane.gov.co/index.php/estadisticas-por- tema/construccion/estadisticas-de-concreto-premezclado
  • [10] Departamento Administrativo Nacional de Estadística. (2020b). Vivienda VIS y NO VIS. https://www.dane.gov.co/index.php/estadisticas-por- tema/construccion/vivienda-vis-y-no-vis
  • [11] Foster, R. (2010). Form Finding And Analysis Of Fabric Formed Concrete Beams [University of Bath]. https://espace.library.uq.edu.au/view/UQ:689900
  • [12] Hawkins, W. J., Herrmann, M., Ibell, T. J., Kromoser, B., Michaelski, A., Orr, J. J., Pedreschi, R., Pronk, A., Schipper,
  • [13] H. R., Shepherd, P., Veenendaal, D., Wansdronk, R., & West, M. (2016). Flexible formwork technologies - a state of the art review. Structural Concrete, 17(6), 911–935. https://doi.org/10.1002/suco.201600117
  • [14] Hawkins, W., Orr, J., Ibell, T., & Shepherd, P. (2020). A design methodology to reduce the embodied carbon of concrete buildings using thin-shell floors. Engineering Structures, 207, 110195.
  • [15] https://doi.org/10.1016/j.engstruct.2020.110195
  • [16] Kolarevic, B. (2004). Architecture in the Digital Age: Design and Manufacturing. In Architecture in the Digital Age: Design and Manufacturing. Taylor & Francis. https://doi.org/10.4324/9780203634561
  • [17] Kostova, K., Ibell, T., Darby, A., & Evernden, M. (2016). Using fabric to shape appropriate concrete structures (p. S174). https://researchportal.bath.ac.uk/en/publications/using- fabric-to-shape-appropriate-concrete-structures
  • [18] López López, D., Van Mele, T., & Block, P. (2019). The combination of tile vaults with reinforcement and concrete. International Journal of Architectural Heritage, 13(6), 782– 798. https://doi.org/10.1080/15583058.201476606
  • [19] Ministerio de Vivienda Ciudad y Territorio de Colombia. (2018). Colombia superó la meta del déficit habitacional consignada en el Plan Nacional de Desarrollo. http://www.minvivienda.gov.co/sala-de- prensa/noticias/2018/abril/colombia-supero-la-meta-del- deficit-habitacional-consignada-en-el-plan-nacional-de- desarrollo
  • [20] Orr, J. J., Darby, A. P., Ibell, T. J., Evernden, M. C., & Otlet, M. (2011). Concrete structures using fabric formwork. The Structural Engineer, 89(8), 20–26. https://researchportal.bath.ac.uk/en/publications/concrete- structures-using-fabric-formwork
  • [21] Preisinger, C. (2013). Linking structure and parametric geometry.
  • [22] Architectural Design, 83(2), 110-113.https://doi.org/10.1002/ad.1564.
  • [23] Rajabzadeh, S., & Sassone, M. (2017). Brick Patterning on Free- Form Surfaces. Nexus Network Journal, 19(1), 5–25. https://doi.org/10.1007/s00004-016-0305-9
  • [24] Rippmann, M., & Block, P. (2013). Funicular Shell Design Exploration. Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA), 337–346. https://www.researchgate.net/publication/271995309_Funi cular_Shell_Design_Exploration
  • [25] Rutten, D. (2009). Grasshopper. https://www.grasshopper3d.com/
  • [26] Sacks, R., Eastman, C. M., & Lee, G. (2004). Parametric 3D modeling in building construction with examples from precast concrete. Automation in Construction, 13(3), 291– 312. https://doi.org/10.1016/S0926-5805(03)00043-8
  • [27] Tayfur, Y., Darby, A., Ibell, T., Evernden, M., & Orr, J. (2016). Serviceability of fabric-formed concrete structures. International Journal of Civil, Environmental, Structural, Construction and Architectural Engineering, 10(5), 537–
  • [28] 542.
  • [29] https://researchportal.bath.ac.uk/en/publications/serviceabi lity-of-fabric-formed-concrete-structures
  • [30] Vazquez, E., Diarte, J., & Gursoy, B. (2018). Bridging Parametric Design and Craftmanship: Materializing the Digital Parametric Wall with Low-tech Masonry Construction Techniques. Proceedings of the 23rd International Conference of the Association for Computer-Aided Architectural Design Research in Asia CAADRIA 2018. https://www.researchgate.net/profile/Julio_Diarte/publicatio n/325478157_Bridging_Parametric_Design_and_Craftman ship_Materializing_the_Digital_Parametric_Wall_with_Low
  • [31] -
  • [32] tech_Masonry_Construction_Techniques/links/5b1065f8ac a2723d9978c6d2/Bridging-Parametric-
  • [33] Veenendaal, D., Coenders, J., Vambersky, J., & West, M. (2011). Design and optimization of fabric-formed beams and trusses: Evolutionary algorithms and form-finding. Structural Concrete, 12(4), 241–254. https://doi.org/10.1002/suco.201100020
  • [34] Visintin, P., Oehlers, D. J., Muhamad, R., & Wu, C. (2013). Partial- interaction short term serviceability deflection of RC beams. Engineering Structures, 56, 993–1006. https://doi.org/10.1016/J.ENGSTRUCT.2013.06.021
  • [35] Yuan, P. F., Zhang, M., & Han, L. (2013). Low-Tech Digital Fabrication: Traditional Brick as Material in Digital Practice (pp. 139–148). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38974-0_13.
Como citar:

Costa, Eduardo; Shepherd, Paul; Velasco, Rodrigo; Hudson, Roland; "Automating Concrete Construction: Sustainable social housing in Colombia", p. 254-259 . In: Congreso SIGraDi 2020. São Paulo: Blucher, 2020.
ISSN 2318-6968, DOI 10.5151/sigradi2020-35

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações