Setembro 2025 vol. 12 num. 1 - XXXII Simpósio Internacional de Engenharia
Trabalho completo - Open Access.
Análise de Máquinas Síncronas de Ímã Permanente e Alternadores Lundell Operando como Geradores
Analysis of Permanent Magnet Synchronous Machines and Lundell Alternators Operating as Generators
SOUZA, Evandro Costa ; SILVA, Ludmila Corrêa de Alkmin e ; MIRANDA, Matheus Henrique Rodrigues ; REGO, Rosana Cibely Batista ;
Trabalho completo:
O estudo das máquinas elétricas (MEs) utilizadas na indústria automotiva tornou-se essencial com o crescente interesse em veículos elétricos e híbridos, impulsionado pela necessidade de reduzir emissões, melhorar o desempenho e aumentar a eficiência energética. As MEs possibilitam a regeneração de parte da energia que, de outra forma, seria convertida em calor durante a frenagem, permitindo a recarga da bateria e aprimorando a eficiência energética do sistema como um todo. Em veículos híbridos em série, essas máquinas podem ser utilizadas exclusivamente como geradores, acopladas a um motor de combustão interna. Neste trabalho, apresentamos um estudo comparativo entre duas máquinas elétricas. Para isso, realizamos uma breve revisão da literatura sobre os princípios de funcionamento e modelagem matemática, além de uma análise da capacidade de geração de tensão em circuito aberto de máquinas síncronas de ímã permanente com fluxo axial e do alternador Lundell, ambos operando como geradores. O estudo é baseado em simulações computacionais, permitindo uma investigação sobre a geração de energia, aspecto relevante para diversas aplicações automotivas. Palavras-chave: alternador Lundell; PMSM; gerador síncrono; simulação; veículos elétricos e híbridos.
Trabalho completo:
The study of electric machines (EMs) used in the automotive industry has become crucial with the growing interest in electric and hybrid vehicles, driven by the need to reduce emissions, enhance performance, and improve energy efficiency. EM enables the regeneration of part of the energy that would otherwise be converted into heat during braking, allowing battery recharging and improving the overall system energy efficiency. In series hybrid vehicles, they can be used exclusively as generators, coupled to an internal combustion engine. In this work, we present a comparative study between two electric machines. For this purpose, a brief literature review on the principles of operation and mathematical modeling is conducted, as well as an analysis of the open-circuit voltage generation capacity of permanent magnet synchronous machines with axial flux and Lundell alternator, both operating as generators. The study is based on computational simulations, yielding an investigation into energy generation, which should be considered in various automotive applications. Keywords: Lundell alternator; PMSM; synchronous generator; simulation; electric and hybrid vehicles.
Palavras-chave: -,
Palavras-chave: -,
DOI: 10.5151/simea2025-PAP91
Referências bibliográficas
- [1] Miguel-Espinar, Carlos, et al. "Review of flux-weakening algorithms to extend the speed range in electric vehicle applications with permanent magnet synchronous machines." IEEE Access 11, 2023, : 22961-2298
- [2] Barroso, Daniel G., et al. "Electrified automotive propulsion systems: state-of-the-art review." IEEE Transactions on Transportation Electrification 8.2, 2021, 2898-2914.
- [3] Mustafi, Nirendra Nath. "An overview of hybrid electric vehicle technology." Engines and Fuels for Future Transport, 2021, 73-102.
- [4] Cai, Shun, James L. Kirtley, and Christopher HT Lee. "Critical review of direct-drive electrical machine systems for electric and hybrid electric vehicles." IEEE Transactions on Energy Conversion, 2022, 2657-2668.
- [5] Sangeetha, Elango, and Vijaya Priya Ramachandran. "An enhanced proportional resonance controller design for the PMSM-based electric vehicle drive system." Heliyon 10.15 (2024).
- [6] Sain, Chiranjit, et al. "Self-controlled PMSM drive employed in light electric vehicle-dynamic strategy and performance optimization." IEEE Access 9 (2021): 57967-57975.
- [7] Yu, Chia-Sung, Yuan-Chih Lin, and Ching-Jan Chen. "Rotational speed detection for the automotive alternator with low-loss rectifier in self-start." IEEE Transactions on Vehicular Technology 70.7 (2021): 6514-6526.
- [8] Yazdan, Tanveer, Muhammad Humza, and Han-Wook Cho. "Three-phase dual-winding multitasked pmsm machine using double layer concentrated winding for HEV application." IEEE Access 11 (2023): 36682-36691.7
- [9] Pindoriya, Rajesh M., et al. "Numerical and experimental analysis of torsional vibration and acoustic noise of PMSM coupled with DC generator." IEEE Transactions on Industrial Electronics 64 (2021): 3345-3356.
- [10] Sain, Chiranjit, et al. "Self-controlled PMSM drive employed in light electric vehicle-dynamic strategy and performance optimization." IEEE Access 9 (2021): 57967-57975.
- [11] Cui, Jun, et al. "Manufacturing processes for permanent magnets: Part I—sintering and casting." Jom 74.4 (2022): 1279-1295.
- [12] El-Hasan, Tareq. “Development of Automotive Permanent Magnet Alternator with Fully Controlled AC/DC Converter”. Energies. 2018, 11. 274. 10.3390/en11020274.
- [13] Tang, Sai Chun, Thomas A. Keim, and David J. Perreault. "Thermal modeling of Lundell alternators." IEEE Transactions on Energy Conversion 20.1 (2005): 25-36.
- [14] Yushkova, O. A., et al. "Research on the Engineering Level of an Integrated Starter–Generator." Russian Electrical Engineering 95.12 (2024): 979-984.
- [15] Viorel, Ioan-Adrian & Szabo, Lorand & Löwenstein, Lars & Şteţ, Cristian. (2004). Integrated Starter-Generators for Automotive Applications. 45.
- [16] SARAFIANOS, Dimitrios; MCMAHON, Richard A; FLACK, Timothy J; PICKERING, Stephen. Characterisation and Modelling of Automotive Lundell Alternators. n. June, p.928–933, 2015.
- [17] R. Bosch Gmbh, “Automotive Electrics Automotive Electronics”, 5th ed. Wiley, 2007.
- [18] G. S. L. Rodrigues, “Controle, gerenciamento e recuperação de energia em veículos a combustão interna,” M.S. thesis, Centro de Engenharia Elétrica e Informática, Universidade Federal de Campina Grande, Campina Grande, 2019.
- [19] R. Ivankovic, J. Cros, M. Taghizadeh, C. A., and P. Viarouge, ‘Power Electronic Solutions to Improve the Performance of Lundell Automotive Alternators’, New Advances in Vehicular Technology and Automotive Engineering. InTech, Aug. 01, 2012. doi: 10.5772/48459.
- [20] S. C. TANG, D. M. OTTEN, T. A. KEIM and D. J. PERREAULT, "Design and Evaluation of a 42 V Automotive Alternator with Integrated Switched-Mode Rectifier," 2007 IEEE Vehicle Power and Propulsion Conference, Arlington, TX, USA, 2007, pp. 250-258, doi: 10.1109/VPPC.2007.4544134.
- [21] J. Rivas, D. Perreault and T. Keim, "Performance improvement of alternators with switched-mode rectifiers," in IEEE Transactions on Energy Conversion, vol. 19, no. 3, pp. 561-568, Sept. 2004, doi: 10.1109/TEC.2004.832072.
- [22] Whaley, David & Soong, W. & Ertugrul, Nesimi. (2004). EXTRACTING MORE POWER FROM THE LUNDELL CAR ALTERNATOR.[25] Noguchi, T. (2007), Trends of permanent-magnet synchronous machine drives. IEEJ Trans Elec Electron Eng, 2: 125-142. https://doi.org/10.1002/tee.20119.
- [23] Huang Q, Huang Q, Guo H, Cao J. Design and research of permanent magnet synchronous motor controller for electric vehicle. Energy Sci Eng. 2023; 11: 112-126. doi:10.1002/ese3.1316.
- [24] O. Bouaziz, I. Jaafar, and F. B. Ammar, “Performance analysis of radial and axial flux PMSM based on 3D FEM modeling,” Turkish Journal of Electrical Engineering and Computer Sciences, vol. 26, no. 3, pp. 1587–1598, 2018.
- [25] P. Curiac, “Optimum design aspects of a power axial flux PMSM,” Revue Roumaine des Sciences Techniques – Électrotechnique et Énergétique, vol. 53, no. 1, pp. 31–39, 2008.
- [26] J. Zhao, X. Liu, S. Wang, and L. Zheng, “Review of design and control optimization of axial flux PMSM in renewable-energy applications,” Chinese Journal of Mechanical Engineering, vol. 36, no. 45, pp. 1–22, Apr. 2023.
- [27] S.-H. Kim, “Electric Motor Control: DC, AC, and BLDC Motors”, 1st ed., Amsterdam: Elsevier, 2017.
- [28] S. D. Umans, “Máquinas elétricas de Fitzgerald e Kingsley”, 7th ed., Porto Alegre, RS: AMGH Editora, 2014.
- [29] S. J. Chapman, “Fundamentos de Máquinas Elétricas”, 5th ed., Porto Alegre, RS: AMGH Editora, 2013.
- [30] J. J. Eckert, F. L. Silva, S. F. da Silva, A. V. Bueno, M. L. M. de Oliveira, and L. C. A. Silva, “Optimal design and power management control of hybrid biofuel–electric powertrain,” Applied Energy, vol. 325, p. 119903, 2022, doi: 10.1016/j.apenergy.2022.119903.
- [31] D. J. Perreault and V. Caliskan, "Automotive power generation and control," in IEEE Transactions on Power Electronics, vol. 19, no. 3, pp. 618-630, May 2004, doi: 10.1109/TPEL.2004.826432.
- [32] EMRAX, “EMRAX-228 Datasheet (v1.6),” Mar. 2025. [Online]. Available: https://emrax.com/wp-content/uploads/2025/03/EMRAX_228_datasheet_v1.6.pdf. [Accessed: May 13, 2025].
Como citar:
SOUZA, Evandro Costa; SILVA, Ludmila Corrêa de Alkmin e; MIRANDA, Matheus Henrique Rodrigues; REGO, Rosana Cibely Batista; "Análise de Máquinas Síncronas de Ímã Permanente e Alternadores Lundell Operando como Geradores", p. 459-465 . In: Anais do XXXII Simpósio Internacional de Engenharia.
São Paulo: Blucher,
2025.
ISSN 2357-7592,
DOI 10.5151/simea2025-PAP91
últimos 30 dias | último ano | desde a publicação
downloads
visualizações
indexações