Trabalho completo - Open Access.

Idioma principal | Segundo idioma

Análise da demanda energética para reciclagem de baterias de veículos elétricos através de um processo hidrometalúrgico flexível

Analysis of energy demand for recycling electric vehicle batteries through a flexible hydrometallurgical process

GOBO, Luciana Assis ; FERRARESE, Andre ; KUMOTO, Elio ; OBARA, Rafael ; BOTELHO JR, ; Amilton Barbosa, ; TENÓRIO, Jorge Alberto Soares ; ESPINOSA, Denise C. R. ;

Trabalho completo:

A descarbonização do setor de transportes através da eletrificação é limitada se considerarmos o ciclo de vida das baterias de íon-lítio desde a manufatura até o descarte. Tais baterias, ao chegar ao fim da vida útil, devem ser recicladas pois, ao recuperar estes metais críticos, aumenta a circularidade dos materiais e a produção de baterias novamente, além de diminuir a emissão de CO2 e os impactos associados às atividades de mineração. Atualmente os processos de reciclagem utilizam técnicas de pirometalurgia empregando alta temperatura, elevado consumo energético e maior emissão de CO2. A hidrometalurgia tem se destacado como um processo promissor para a reciclagem de baterias, com elevada eficiência, emprego de baixas temperaturas, menor emissão e menor consumo de energia. O presente trabalho objetiva analisar a demanda energética e o rendimento de materiais reciclados através do processo hidrometalúrgico desenvolvido, uma vez que este visa minimizar a emissão de resíduos na natureza com um processo flexível para reciclagem de baterias de íon-lítio. Foram processados diferentes tipos de baterias, a separação física e lixiviação recuperaram mais de 90% dos minerais de interesse com uma redução de consumo energético de até 65% em comparação com as técnicas pirometalúrgicas.

Trabalho completo:

The decarbonization of the transport sector through electrification is limited if we consider the life cycle of lithium-ion batteries from manufacture to disposal. Such batteries, when reaching the end of their useful life, must be recycled because, by recovering these critical metals, it increases the circularity of the materials and the production of batteries again, in addition to reducing CO2 emissions and the impacts associated with mining activities. Currently, recycling processes use pyrometallurgy techniques, employing high temperature, high energy consumption and higher CO2 emissions. Hydrometallurgy has stood out as a promising process for recycling batteries, with high efficiency, use of low temperatures, lower emissions, and lower energy consumption. This work aims to analyze the energy demand and the yield of recycled materials through the developed hydrometallurgical process, since it aims to minimize the emission of waste in nature with a flexible process for recycling lithium-ion batteries. Different types of batteries were processed, physical separation and leaching recovered more than 90% of the minerals of interest with a reduction in energy consumption of up to 65% compared to pyrometallurgical techniques.

Palavras-chave: ,

Palavras-chave: ,

DOI: 10.5151/simea2023-PAP59

Referências bibliográficas
  • [1] " UNFCCC. Kyoto Protocol Reference Manual on
  • [2] Accounting of Emissions and Assigned Amount. Germany,
  • [3] 2008.
  • [4] [2] UN. Paris Agreement to the United Nations Framework
  • [5] Convention on Climate Change, Dec. 12, 2015, T.I.A.S.
  • [6] No. 16-1104. 2015.
  • [7] [3] Gigliotti, Massimo; Schmidt-Traub, Guido; Bastianoni,
  • [8] Simone. The Sustainable Development Goals.
  • [9] Encyclopedia of Ecology. 2nd ed., Elsevier, p. 426-431,
  • [10] 2019.
  • [11] [4] Papadis E, Tsatsaronis G. Challenges in the
  • [12] decarbonization of the energy sector. Energy
  • [13] 2020;205:118025.
  • [14] https://doi.org/10.1016/j.energy.2020.118025.
  • [15] [5] IEA (2021) [16 may 2023]. Available in:
  • [16] https://www.iea.org/data-and-statistics/datatools/greenhouse-gas-emissions-from-energy-data-explorer.
  • [17] Access in: 16 may. 2023.
  • [18] [6] IEA (2022) [16 may 2023]. Available in:
  • [19] https://www.iea.org/data-and-statistics/data-product/ieaenergy-and-carbon-tracker-2022. Access in: 16 may. 2023.
  • [20] [7] IEA (2020) Global Energy Review 2020 – The impacts
  • [21] of the Covid-19 crisis on global energy demand and CO2
  • [22] emissions. IEA, Paris. https://www.iea.org/reports/globalenergy-review-2020
  • [23] [8] Zhang, Runsen. Chapter 2 - The role of the transport
  • [24] sector in energy transition and climate change mitigation:
  • [25] insights from an integrated assessment model. Transport
  • [26] and Energy Research, 2020, p.15-30. doi:
  • [27] https://doi.org/10.1016/B978-0-12-815965-1.00002-8
  • [28] [9] AbdulRafiu, Abbas; Sovacool, Benjamin K.; Daniels,
  • [29] Chux. The dynamics of global public research funding on
  • [30] climate change, energy, transport, and industrial
  • [31] decarbonization. Renewable and Sustainable Energy
  • [32] Reviews. v.162, 2022: 112420,
  • [33] https://doi.org/10.1016/j.rser.2022.112420.
  • [34] [10] Guilherme, R., Garbe, T., Cifoni, F., Kersten, T.,
  • [35] “Biofuels as a strategy for CO2e-Reduction in Brazil”,
  • [36] International Engine Congress 2023, Baden Baden,
  • [37] Germany, February 2023.
  • [38] [11] Girardi, P., Gargiulo, A. & Brambilla, P.C. A
  • [39] comparative LCA of an electric vehicle and an internal
  • [40] combustion engine vehicle using the appropriate power
  • [41] mix: the Italian case study. The International Journal of
  • [42] Life Cycle Assessment 20, 1127–1142 (2015).
  • [43] https://doi.org/10.1007/s11367-015-0903-x
  • [44] [12] Moïsé, E. and S. Rubínová (2023), ""Trade policies to
  • [45] promote the circular economy: A case study of lithium-ion
  • [46] batteries"", OECD Trade and Environment Working
  • [47] Papers, No. 2023/01, OECD Publishing, Paris,
  • [48] https://doi.org/10.1787/d75a7f46-en.
  • [49] [13] Harper G, Sommerville R, Kendrick E, Driscoll L,
  • [50] Slater P, Stolkin R, et al. Recycling lithium-ion batteries
  • [51] from electric vehicles. Nature. 2019, 575:75–86.
  • [52] https://doi.org/10.1038/s41586-019-1682-5.
  • [53] [14] Vasconcelos D da S, Tenório JAS, Botelho Junior AB,
  • [54] Espinosa DCR. Circular Recycling Strategies for LFP
  • [55] Batteries: A Review Focusing on Hydrometallurgy
  • [56] Sustainable Processing. Metals (Basel) 2023;13:543.
  • [57] https://doi.org/10.3390/met13030543.
  • [58] [15] Gaines, Linda. Lithium-ion battery recycling
  • [59] processes: Research towards a sustainable course.
  • [60] Sustainable Materials and Technologies. v.17, 2018.
  • [61] https://doi.org/10.1016/j.susmat.2018.e00068.
  • [62] [16] Dunn, J. B.; Gaines, L; Kelly, J. C; James, C.;
  • [63] Gallagher, K. G. The significance of Li-ion batteries in
  • [64] electric vehicle life-cycle energy and emissions and
  • [65] recycling's role in its reduction. Energy & Environmental
  • [66] Science. 2015, v.8, p.158-168. The Royal Society of
  • [67] Chemistry. http://dx.doi.org/10.1039/C4EE03029J
  • [68] [17] Ferrarese, A, Kumoto, E. A., Gobo, L.A., Botelho
  • [69] Junior, A. B., Soares Tenório, J. A., Espinosa, D., “Flexible
  • [70] hydrometallurgy process for electric vehicle battery
  • [71] recycling”, SAE 2022-36-0072, SAE Brasil 2022, Brazil,
  • [72] November 2022
  • [73] [18] Martins LS, Guimarães LF, Botelho Junior AB,
  • [74] Tenório JAS, Espinosa DCR. Electric car battery: An
  • [75] overview on global demand, recycling and future
  • [76] approaches towards sustainability. Journal of
  • [77] Environmental Management 2021;295:113091.
  • [78] https://doi.org/10.1016/j.jenvman.2021.113091.
  • [79] [19] Makuza B, Tian Q, Guo X, Chattopadhyay K, Yu D.
  • [80] Pyrometallurgical options for recycling spent lithium-ion
  • [81] batteries: A comprehensive review. Journal of Power
  • [82] Sources. 2021; 491:229622.
  • [83] https://doi.org/10.1016/j.jpowsour.2021.229622.
  • [84] [20] Assefi M, Maroufi S, Yamauchi Y, Sahajwalla V.
  • [85] Pyrometallurgical recycling of Li-ion, Ni–Cd and Ni–MH
  • [86] batteries: A minireview. Current Opinion in Green and
  • [87] Sustainable Chemistry. 2020; 24:26–31.
  • [88] https://doi.org/10.1016/j.cogsc.2020.01.005.
  • [89] [21] Dai, Qiang; Spangenberger, Jeffrey; Ahmed, Shabbir;
  • [90] Gaines, Linda; Kelly, Jarod C.; Wang, Michael. EverBatt:
  • [91] A closed-loop battery recycling cost and environmental
  • [92] impacts model. United States: 2019. doi:10.2172/1530874.
  • [93] [22] Xu, Panpan; Yang, Zhenzhen; Yu, Xiaolu; Holoubek,
  • [94] John; Gao, Hongpeng; Li, Mingqian; Cai, Guorui; Bloom,
  • [95] Ira; Liu, Haodong; Chen, Yan; An, Ke; Pupek, Krzysztof
  • [96] Z.; Liu, Ping; Chen, Zheng. ACS Sustainable Chemistry
  • [97] & Engineering. 2021, 9 (12), 4543-4553 doi:
  • [98] 10.1021/acssuschemeng.0c09017
  • [99] [23] OurWorldInData [21 may 2023] Available in:
  • [100] https://ourworldindata.org/grapher/carbon-intensityelectricity?tab=chart&country=EU27~OWID_WRL~OWID_EUR~OWID_EU27~BRA~USA
  • [101] ~Europe+%28Ember%29~European+Union+%2827%29+
  • [102] %28Ember%29. Access in: 21 may. 2023.
  • [103] [24] Jung, Joey Chung-Yen; Sui, Pang-Chieh; Zhang,
  • [104] Jiujun, A review of recycling spent lithium-ion battery
  • [105] cathode materials using hydrometallurgical treatments,
  • [106] Journal of Energy Storage, 2021, v.35, 102217,
  • [107] https://doi.org/10.1016/j.est.2020.102217.
  • [108] [25] Georgi-Maschler, T.; Friedrich, B; Weyhe, R.; Heegn,
  • [109] H.; Rutz, M. Development of a recycling process for Li-ion
  • [110] batteries, Journal of Power Sources, 2012, v.207, p.173-
  • [111] 182. https://doi.org/10.1016/j.jpowsour.2012.01.152.
  • [112] [26] Takahashi VCI, Botelho Junior AB, Espinosa DCR, Tenório
  • [113] JAS. Enhancing cobalt recovery from Li-ion batteries using
  • [114] grinding treatment prior to the leaching and solvent extraction
  • [115] process. Journal of Environmental Chemical Engineering
  • [116] 2020;8:103801. https://doi.org/10.1016/j.jece.2020.103801"
Como citar:

GOBO, Luciana Assis; FERRARESE, Andre; KUMOTO, Elio; OBARA, Rafael; BOTELHO JR, ; Amilton Barbosa, ; TENÓRIO, Jorge Alberto Soares; ESPINOSA, Denise C. R.; "Análise da demanda energética para reciclagem de baterias de veículos elétricos através de um processo hidrometalúrgico flexível", p. 349-354 . In: Anais do XXX Simpósio Internacional de Engenharia Automotiva . São Paulo: Blucher, 2023.
ISSN 2357-7592, DOI 10.5151/simea2023-PAP59

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações