Full article - Open Access.

Idioma principal | Segundo idioma

ADDITIVE MANUFACTURING APPLIED TO UNDERWATER COMPONENTS: A SYSTEMATIC REVIEW

ADDITIVE MANUFACTURING APPLIED TO UNDERWATER COMPONENTS: A SYSTEMATIC REVIEW

Silva, Leonardo Oliveira Passos da ; Shigueoka, Marcelo Okada ; Cerqueira, Mateus Santos de ; Silva, Bruno Caetano dos Santos ; Coelho, Rodrigo Santiago ;

Full article:

Additive manufacturing (AM) has garnered significant attention due to its potential and advantages, particularly in the context of underwater environments. This study aims to identify articles describing the 3D printing of components applied in underwater environments. A systematic literature review was conducted on the Web of Science and Scopus databases regarding the proposed topic. After searching and applying inclusion and exclusion criteria, 15 most relevant articles were selected. Most of the articles focused on printing housings and propellers for Autonomous Underwater Vehicle (AUV), using Material Extrusion (MEX) technology and polymers as the printing material. The study provides insights into the potential of AM for the underwater industry, such as new design, and efficient production methods.

Full article:

Additive manufacturing (AM) has garnered significant attention due to its potential and advantages, particularly in the context of underwater environments. This study aims to identify articles describing the 3D printing of components applied in underwater environments. A systematic literature review was conducted on the Web of Science and Scopus databases regarding the proposed topic. After searching and applying inclusion and exclusion criteria, 15 most relevant articles were selected. Most of the articles focused on printing housings and propellers for Autonomous Underwater Vehicle (AUV), using Material Extrusion (MEX) technology and polymers as the printing material. The study provides insights into the potential of AM for the underwater industry, such as new design, and efficient production methods.

Palavras-chave: Additive manufacturing, underwater environment, systematic review,

Palavras-chave: Additive manufacturing, underwater environment, systematic review,

DOI: 10.5151/siintec2023-305887

Referências bibliográficas
  • [1] " F. Bartolomeu et al., “316L stainless steel mechanical and tribological behavior—A comparison between selective laser melting, hot pressing and conventional casting”, Addit Manuf, vol. 16, p. 81–89, ago. 2017, doi: 10.1016/J.ADDMA.2017.05.007.
  • [2] M. Lalegani Dezaki, M. K. A. Mohd Ariffin, e S. Hatami, “An overview of fused deposition modelling (FDM): research, development and process optimisation”, Rapid Prototyp J, vol. 27, no 3, p. 562–582, abr. 2021, doi: 10.1108/RPJ-08-2019-0230/FULL/XML.
  • [3] M. Javaid, A. Haleem, R. P. Singh, R. Suman, e S. Rab, “Role of additive manufacturing applications towards environmental sustainability”, Advanced Industrial and Engineering Polymer Research, vol. 4, no 4, p. 312–322, out. 2021, doi: 10.1016/J.AIEPR.2021.07.005.
  • [4] H. M. T. Khaleed, I. A. Badruddin, A. N. Saquib, M. F. Addas, S. Kamangar, e T. M. Yunus Khan, “Novel Approach to Manufacture an AUV Propeller by Additive Manufacturing and Error Analysis”, Applied Sciences, vol. 9, no 20, p. 4413, out. 2019, doi: 10.3390/app9204413.
  • [5] M. Ziółkowski e T. Dyl, “Possible Applications of Additive Manufacturing Technologies in Shipbuilding: A Review”, Machines 2020, Vol. 8, Page 84, vol. 8, no 4, p. 84, dez. 2020, doi: 10.3390/MACHINES8040084.
  • [6] Y. He, S. Guo, L. Shi, S. Pan, e Z. Wang, “3D printing technology-based an amphibious spherical robot”, em 2014 IEEE International Conference on Mechatronics and Automation, NA, Org., em NA, vol. NA. 345 E 47TH ST, NEW YORK, NY 10017 USA: IEEE, ago. 2014, p. 1382–1387. doi: 10.1109/ICMA.2014.6885901.
  • [7] B. T. Champion, M. Jamshidi, e M. A. Joordens, “3D printed underwater housing”, em 2016 World Automation Congress (WAC), NA, Org., em World Automation Congress, vol. NA. 345 E 47TH ST, NEW YORK, NY 10017 USA: IEEE, jul. 2016, p. 1–6. doi: 10.1109/WAC.2016.7582993.
  • [8] Q.-S. HU, W.-P. CHENG, e X.-W. LIU, “Prionace Glauca Streamline Body 3D Printing Technology Research and Application”, em Proceedings of the 3rd International Conference on Material Engineering and Application (ICMEA 2016), Paris, France: Atlantis Press, 2016, p. 600–606. doi: 10.2991/icmea-16.2016.9
  • [9] A. Griffiths, A. Dikarev, P. R. Green, B. Lennox, X. Poteau, e S. Watson, “AVEXIS—Aqua Vehicle Explorer for In-Situ Sensing”, IEEE Robot Autom Lett, vol. 1, no 1, p. 282–287, jan. 2016, doi: 10.1109/LRA.2016.2519947.
  • [10] L. Barbieri, F. Bruno, A. Gallo, M. Muzzupappa, e M. L. Russo, “Design, prototyping and testing of a modular small-sized underwater robotic arm controlled through a Master-Slave approach”, Ocean Engineering, vol. 158, p. 253–262, jun. 2018, doi: 1016/J.OCEANENG.2018.04.032.
  • [11] S. Kurumaya et al., “A Modular Soft Robotic Wrist for Underwater Manipulation”, Soft Robot, vol. 5, no 4, p. 399–409, ago. 2018, doi: 10.1089/soro.2017.0097.
  • [12] J. Z. Gul, K. Y. Su, e K. H. Choi, “Fully 3D Printed Multi-Material Soft Bio-Inspired Whisker Sensor for Underwater-Induced Vortex Detection”, Soft Robot, vol. 5, no 2, p. 122–132, abr. 2018, doi: 10.1089/soro.2016.0069.
  • [13] M. N. I. Shiblee, K. Ahmed, M. Kawakami, e H. Furukawa, “4D Printing of Shape‐Memory Hydrogels for Soft‐Robotic Functions”, Adv Mater Technol, vol. 4, no 8, p. 1900071, ago. 2019, doi: 10.1002/admt.201900071.
  • [14] B. T. Phillips et al., “Additive manufacturing aboard a moving vessel at sea using passively stabilized stereolithography (SLA) 3D printing”, Addit Manuf, vol. 31, no NA, p. 100969, jan. 2020, doi: 10.1016/j.addma.2019.100969.
  • [15] H. M. T. Khaleed et al., “Finite Element Analysis of Nylon Based 3D Printed Autonomous Underwater Vehicle Propeller”, Materials Research, vol. 23, no 5, p. NA, 2020, doi: 10.1590/1980-5373-mr-2020-0236.
  • [16] H. M. T. Khaleed et al., “Comparison of 3D Printed Underwater Propeller Using Polymers and Conventionally Developed AA6061”, J Mater Eng Perform, vol. 31, no 6, p. 5149–5158, jun. 2022, doi: 10.1007/S11665-022-06576-Z.
  • [17] P. Baillon, S. Dixon, K. Faust, P. Herman, H. Seabring, e S. Wood, “Stereolithography 3D Printed Resin Pressure Enclosures Applied in the Marine Environment”, Oceans Conference Record (IEEE), vol. 2022-October, 2022, doi: 10.1109/OCEANS47191.2022.9977042.
  • [18] C. Smith, A. Laun, L. Devries, D. W. Fredriksson, e M. Murray, “Design and Development of a Bioinspired Lateral Line Sensor for Uncrewed Underwater Vehicle Operations”, Oceans Conference Record (IEEE), vol. 2022-October, 2022, doi: 10.1109/OCEANS47191.2022.9977279.
  • [19] P. Singh Matharu, Z. Wang, J. H. Costello, S. P. Colin, R. H. Baughman, e Y. T. Tadesse, “SoJel –A 3D printed jellyfish-like robot using soft materials for underwater applications”, Ocean Engineering, vol. 279, p. 114427, jul. 2023, doi: 10.1016/j.oceaneng.2023.114427."
Como citar:

Silva, Leonardo Oliveira Passos da ; Shigueoka, Marcelo Okada ; Cerqueira, Mateus Santos de ; Silva, Bruno Caetano dos Santos ; Coelho, Rodrigo Santiago ; "ADDITIVE MANUFACTURING APPLIED TO UNDERWATER COMPONENTS: A SYSTEMATIC REVIEW", p. 205-212 . In: . São Paulo: Blucher, 2023.
ISSN 2357-7592, DOI 10.5151/siintec2023-305887

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações