Full Article - Open Access.

Idioma principal

A Survey of Cable-Suspended Parallel Robots and their Applications in Architecture and Construction

Shahmiri, Fereshteh; Gentry, Russell;

Full Article:

Serial, aerial and solid-linked parallel robots are unable to handle large payloads in building-scale workspaces for on-site applications and are thus best suited for automated fabrication in plant settings. In contrast, Cable Suspended Parallel Robots or CSPRs are able to handle large loads and traverse great distances as required on building construction sites. This paper reviews the existing literature and practice to bridge the gap between our understanding of CSPRs and their applicability to building-scale tasks such as full-scale concrete printing and building façade installation. The research identifies key activities in CSPRs fabrication workflows. Using a comparative approach, the paper investigates five CSPR variants and assesses the performance characteristics. A simple kinematic model of each CSPR is developed and implemented as a Rhino/Grasshopper script to aid in the performance assessment of each system. The paper concludes with a ranking of CSPR systems and their likely applicability to full-scale implementation on a construction site.

Full Article:

Palavras-chave: Cable Suspended Parallel Robots; CSPR; Automation; AEC,

Palavras-chave: ,

DOI: 10.5151/despro-sigradi2016-484

Referências bibliográficas
  • [1] Abedinnasab, M. H., Zohoor, H., & Yoon, Y. J. (2012). Exploiting Higher Kinematic Performance-Using a 4-Legged Redundant PM Rather Than Gough-Stewart Platforms. INTECH Open Access Publisher.
  • [2] Afsari, K., & Eastman. (2016) C. M. A Comparison of Construction Classification Systems Used for Classifying Building Product Models.
  • [3] Albus, J., Bostelman, R., & Dagalakis, N. (1992). The NIST robocrane.Journal of Robotics System, 10(5).
  • [4] Beer, R., Mayhew, D., Bredfeldt, C., & Bachrach, B. (2008, October). Technical evaluation of the MACARM: a cable robot for upper limb neurorehabilitation. In 2008 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (pp. 942-947). IEEE.
  • [5] Bosscher, P., & Ebert-Uphoff, I. (2004, April). A stability measure for underconstrained cable-driven robots. In Robotics and Automation, 2004. Proceedings. ICRA'04. 2004 IEEE International Conference on (Vol. 5, pp. 4943-4949). IEEE.
  • [6] Bosscher, P., Williams, R. L., Bryson, L. S., & Castro-Lacouture, D. (2007). Cable-suspended robotic contour crafting system. Automation in Construction, 17(1), 45-55.
  • [7] Bostelman, R., Albus, J., Dagalakis, N., Jacoff, A., & Gross, J. (1994, August). Applications of the NIST RoboCrane. In Proceedings of the 5th International Symposium on Robotics and Manufacturing (pp. 14-18).
  • [8] Bruckmann, T., Schramm, D., Mikelsons, L., Hiller, M., & Brandt, T. (2008). Wire robots part I: Kinematics, analysis & design. INTECH Open Access Publisher.
  • [9] Dasgupta, B., & Mruthyunjaya, T. S. (2000). The Stewart platform manipulator: a review. Mechanism and machine theory, 35(1), 15-40.
  • [10] Diao, X., Ma, O., & Lu, Q. (2008, September). Singularity analysis of planar cable-driven parallel robots. In 2008 IEEE Conference on Robotics, Automation and Mechatronics (pp. 272-277). IEEE.
  • [11] German, J. J., Jablokow, K. W., & Cannon, D. J. (2001). The cable array robot: Theory and experiment. In Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference on (Vol. 3, pp. 2804-2810). IEEE.
  • [12] Izard, J. B., Gouttefarde, M., Baradat, C., Culla, D., & Sallé, D. (2013). Integration of a parallel cable-driven robot on an existing building façade. InCable-Driven Parallel Robots (pp. 149-164). Springer Berlin Heidelberg.
  • [13] Kawamura, S., Choe, W., Tanaka, S., & Pandian, S. R. (1995, May). Development of an ultrahigh speed robot FALCON using wire drive system. In Robotics and Automation, 1995. Proceedings., 1995 IEEE International Conference on (Vol. 1, pp. 215-220). IEEE.
  • [14] Kawamura, S., Kino, H., & Won, C. (2000). High-speed manipulation by using parallel wire-driven robots. Robotica, 18(1), 13-21.
  • [15] Khosravi, M. A., & Taghirad, H. D. (2014). Robust PID control of fully-constrained cable driven parallel robots. Mechatronics, 24(2), 87-97.
  • [16] Lamaury, J., & Gouttefarde, M. (2013). A tension distribution method with improved computational efficiency. In Cable-driven parallel robots (pp. 71-85). Springer Berlin Heidelberg.
  • [17] Lytle, A. M., Saidi, K. S., Bostelman, R. V., Stone, W. C., & Scott, N. A. (2004). Adapting a teleoperated device for autonomous control using three-dimensional positioning sensors: experiences with the NIST RoboCrane.Automation in Construction, 13(1), 101-118.
  • [18] McGee, W. (2014). Robotic Fabrication in Architecture, Art and Design 2014. M. P. de Leon (Ed.). Springer.
  • [19] Maeda, K., Tadokoro, S., Takamori, T., Hiller, M., & Verhoeven, R. (1999). On design of a redundant wire-driven parallel robot WARP manipulator. InRobotics and Automation, 1999. Proceedings. 1999 IEEE International Conference on (Vol. 2, pp. 895-900). IEEE.
  • [20] Mayhew, D., Bachrach, B., Rymer, W. Z., & Beer, R. F. (2005, June). Development of the MACARM-a novel cable robot for upper limb neurorehabilitation. In 9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005. (pp. 299-302). IEEE.
  • [21] Merlet, J. P. (2014, May). Checking the cable configuration of cable-driven parallel robots on a trajectory. In 2014 IEEE International Conference on Robotics and Automation (ICRA) (pp. 1586-1591). IEEE.
  • [22] Moreira, E., Pinto, A. M., Costa, P., Moreira, A. P., Veiga, G., Lima, J., ... & Costa, P. (2015, March). Cable robot for non-standard architecture and construction: a dynamic positioning system. In Industrial Technology (ICIT), 2015 IEEE International Conference on (pp. 3184-3189). IEEE.
  • [23] Reinhardt, D., Saunders, R., & Burry, J. (2016). Robotic Fabrication in Architecture, Art and Design 2016. Springer International Publishing.
  • [24] Ruiz, A. L. C., Caro, S., Cardou, P., & Guay, F. (2015). Arachnis: Analysis of robots actuated by cables with handy and neat interface software. In Cable-Driven Parallel Robots (pp. 293-305). Springer International Publishing.
  • [25] Rouse, M. (2009). Degree of freedom. http://whatis.techtarget.com/definition/degrees-of-freedom
  • [26] Sousa, J. P., Palop, C. G., Moreira, E., Pinto, A. M., Lima, J., Costa, P., ... & Moreira, A. P. (2016). The SPIDERobot: A Cable-Robot System for On-site Construction in Architecture. In Robotic Fabrication in Architecture, Art and Design 2016 (pp. 230-239). Springer International Publishing.
  • [27] Tadokoro, S., Murao, Y., Hiller, M., Murata, R., Kohkawa, H., & Matsushima, T. (2002). A motion base with 6-DOF by parallel cable drive architecture.IEEE/ASME transactions on mechatronics, 7(2), 115-123.
  • [28] Tang, X. (2014). An overview of the development for cable-driven parallel manipulator. Advances in Mechanical Engineering, 6, 8230
  • [29] Williams, R. L., Xin, M., & Bosscher, P. (2008, January). Contour-crafting-cartesian-cable robot system concepts: workspace and stiffness comparisons. In ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (pp. 31-38). American Society of Mechanical Engineers.
  • [30] Zi, B., Wu, X., Lin, J., & Zhu, Z. (2012). Inverse kinematics and singularity analysis for a 3-DOF hybrid-driven cable-suspended parallel robot. International journal of advanced robotic systems, 9.
Como citar:

Shahmiri, Fereshteh; Gentry, Russell; "A Survey of Cable-Suspended Parallel Robots and their Applications in Architecture and Construction", p. 914-920 . In: XX Congreso de la Sociedad Iberoamericana de Gráfica Digital [=Blucher Design Proceedings, v.3 n.1]. São Paulo: Blucher, 2016.
ISSN 2318-6968, DOI 10.5151/despro-sigradi2016-484

últimos 30 dias | último ano | desde a publicação