Março 2021 vol. 7 num. 1 - XI Encontro Científico de Física Aplicada

Artigo completo - Open Access.

Idioma principal | Segundo idioma

A Equação de Schroedinger num Cenário deComprimento Minimo

A Equação de Schroedinger num Cenário deComprimento Minimo

Oakes, A. O. G.;

Artigo completo:

In this work, we intend to investigate the application of the Schroedinger equation in a minimum length scenario for a potential already known in nature. In this perspective, we will apply to the potential barrier, whose ordinary case is already widely known in the literature. We intend to show the solutions of the Schroedinger equation in this scenario, the stationary solutions and, finally, discuss the transmission coefficient of the wave.

Artigo completo:

In this work, we intend to investigate the application of the Schroedinger equation in a minimum length scenario for a potential already known in nature. In this perspective, we will apply to the potential barrier, whose ordinary case is already widely known in the literature. We intend to show the solutions of the Schroedinger equation in this scenario, the stationary solutions and, finally, discuss the transmission coefficient of the wave.

Palavras-chave: -,

Palavras-chave: -,

DOI: 10.5151/xiecfa-OAKES_R1

Referências bibliográficas
  • [1] Gonçalves, A. O. O. A Equação de Schroedinger num Cenário de Comprimento Mínimo. Tese (Doutorado em Física), Programa de Pós-Graduação em Física, Universidade Federal do Espírito Santo, Vitória, 2019.
  • [2] Kempf, A; Mangano G.; Mann, R. B. Hilbert space representation of the minimal length uncertainty relation. Pys. Rev., vol D52, 1995.
  • [3] Kempf, A. On quantum field theory with nonzero minimal ucertainties in positions and momenta, Journal of Mathematical Physics, vol 38, n. 3, 1997. Disponível em http://dx.doi.org/10.1063/1.531814}
  • [4] Pedram, P. New approach to nonpertubative quantum mechanics with minimal length uncertainty, Physical ReviewD, vol 85, 2011.
  • [5] Pedram, P. A class of GUP solutions in deformed quantum mechanics. Int. J. Mod. Phys. D, vol. 19, 2010. Disponível em \url{ arXiv:1103.3805}
  • [6] Hossenfelder, S. Minimal length scale scenarios for quantum gravity. Living Rev. Relativity, vol 16, n. 2, 2013.
  • [7] Dorsh, G.; Nogueira, J. A. Maximally Localized States in Quantum Mechanics with a Modified Commutation Relation to All Orders. International Journal of Modern Physics A Vol. 27, No 21, 2012. Disponível em \url{arXiv:1106.2737}
  • [8] Pedram, P. A higher order GUP with minimal length uncertainty and maximal momentum. Physics Letters B, Volume 714, números 2?5, 2012.
  • [9] Oakes,A. O. G.; Gusson, M. F.; Dilem, B. B.; Furtado, R. G.; Francisco, R. O.; Fabris, J. C.; Nogueira, J. A. An infinite square-well potential as a limiting case of a square-well potential in a minimal-length scenario. International Journal of Modern Physics AVol. 35, No. 14, 2020.
  • [10] Gusson, M. F.; Oakes,A. O. G.; Dilem, B. B.; Furtado, R. G.; Francisco, R. O.; Fabris, J. C.; Nogueira, J. A. Dirac $\delta$-function potential in quasiposition representation of a minimal-length scenario. European Physical Journal C, vol 78 n. 3, 2018.
Como citar:

Oakes, A. O. G.; "A Equação de Schroedinger num Cenário deComprimento Minimo", p. 127-133 . In: Anais do XI Encontro Científico de Física Aplicada. São Paulo: Blucher, 2021.
ISSN 2358-2359, DOI 10.5151/xiecfa-OAKES_R1

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações