Artigo Completo - Open Access.

Idioma principal | Segundo idioma

WHITNEY/NE´DE´ LEC ELEMENTS METHOD APPROACH APPLIED IN THE MAXWELL’S EQUATIONS

WHITNEY/NÉDÉ LEC ELEMENTS METHOD APPROACH APPLIED IN THE MAXWELL’S EQUATIONS

Sebold, Jean Eduardo ; Oliveira, Saulo Pomponet ; Lacerda, Luiz Alkimin de ; Carrer, José Antonio Marques ;

Artigo Completo:

This work concerns Whitney and N´ed´elec finite element methods for time-harmonic Maxwell’s equations. We review the derivation of the harmonic equations from full Maxwell’s equations as well as their variational formulation, and build the Whitney and N´ed´elec element spaces, whose functions have continuous tangential components along the interface of adjacent elements. We study the dispersive behaviour of first-order N´ed´elec elements in two and three dimensions, in terms of the time frequency and the mesh element size, and present an explicit form for the discrete dispersion relation. Numerical experiments validate the performance of Whitney elements and N´ed´elec first order in a two-dimensional domain, that also illustrates the dispersion of the approximate solution with respect to the exact solution. The discrete dispersion relation for elements of the first order, show, through numerical evidence that the numerical phase velocity can be used as an error estimator in the Whitney and N´ed´elec finite element approximation, and thus, display an initial parameter h to the mesh refinement.

Artigo Completo:

This work concerns Whitney and N´ed´elec finite element methods for time-harmonic Maxwell’s equations. We review the derivation of the harmonic equations from full Maxwell’s equations as well as their variational formulation, and build the Whitney and N´ed´elec element spaces, whose functions have continuous tangential components along the interface of adjacent elements. We study the dispersive behaviour of first-order N´ed´elec elements in two and three dimensions, in terms of the time frequency and the mesh element size, and present an explicit form for the discrete dispersion relation. Numerical experiments validate the performance of Whitney elements and N´ed´elec first order in a two-dimensional domain, that also illustrates the dispersion of the approximate solution with respect to the exact solution. The discrete dispersion relation for elements of the first order, show, through numerical evidence that the numerical phase velocity can be used as an error estimator in the Whitney and N´ed´elec finite element approximation, and thus, display an initial parameter h to the mesh refinement.

Palavras-chave: Whitney Elements, N´ed´elec Elements, Legendre hierarchical basis functions, Whitney Elements, N´ed´elec Elements, Legendre hierarchical basis functions,

Palavras-chave: ,

DOI: 10.5151/mathpro-cnmai-0011

Referências bibliográficas
  • [1] Adams, R. 1975. Sobolev Spaces. New York, USA: Academic Press. 300p.
  • [2] Ainsworth, M. 2003. Discrete dispersion for hp-version finite element approximation at high wavenumber. SIAM J. Numer. Analysis, vol.42, 553–575.
  • [3] Ainsworth, M. 2004. Dispersive properties of high - order N´ed´elec/edge element approximation of the time - harmonic
  • [4] Maxwell equations. Philosophical transactions of the The Royal Society of London, vol.362, 471–491.
  • [5] Ainsworth, M. and Coyle, J. 2001. Hierarchic hp-edge element families for Maxwell’s equations on hybrid quadrilateral and triangular meshes. Comput. Methods Appl. Mech. Engrg, vol. 190, 6709–6733.
  • [6] Adjerid, S. 2001. Hierarchical finite element bases for triangular and tetrahedral elements. Comput. Methods Appl. Mech. Engrg, vol.190, 2925–2941.
  • [7] Boffi, D. and Perugia, I. 1999. Computation model of electromagnetic resonator: analysis of edge element approximation. SIAM J. Numer. Ana, vol. 36, 1264–1290.
  • [8] Brenner, S. and Scott, L. 1994. The Mathematical Theory of Finite Element Methods. New York, USA: Springer-Verlag. 380p.
  • [9] Brezzi, F. and Fortin, M. 1991. Mixed and Hybrid Finite Element Methods. New York, USA: Springer-Verlag. 421p.
  • [10] Christon, M. 1999. The influence of the mass Matrix on the dispersive nature of the semi-discrete, second-order wave equation. Comput. Methods Appl. Mech. Engrg, vol.173, 146–166.
  • [11] Ciarlet, G. 1978. The Element Method for Elliptic Problems. New York, USA: North-Holland Pub. 551p.
  • [12] Colton, D. and Kress, R. 1983. Integral Equations Methods in Scattering Theory. New York, USA: John Wiley and Sons InC. 378p.
  • [13] Girault, V. and Raviart, P. 1986. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms. Berlim, Deutschland: Springer-Verlag. 423p.
  • [14] Girault, V., Bernardi, C., Amrouche, C. and Dauge, M. 1998. Vector potentials in three-dimensional non-smooth domains. Mathematical Methods in the Applied Sciences, vol. 21, 823–864.
  • [15] Greenleaf, A. Kurylev, Y. Lassas, M. and Uhlmann, G. 2007. Full-Wave Invisibility of Active Devices at All Frequencies. Communications in Mathematical Physics, vol. 275, 749–789.
  • [16] Grisvard, P. 1985 Elliptic Problems in Nonsmooth Domains. Massachusetts, USA: Pitman Publishing INC. 287p.
  • [17] Haueisen, J. 1997. Influence of Tissue Resistivities on Neuromagnetic Fields and Electric Potentials Studied with a Finite Element Model of the Head IEEE Transactions on Biomedical Engineering, vol. 44, 727–734.
  • [18] Ihlenburg, F. and Babuˇska, I. 1997. Finite element solution of the Helmholtz equation with high wave number. Society for Industrial and Applied Mathematics, vol.34, 315–358.
  • [19] Jin, J. 2002. The Finite Element Method in Electromagnetism Second Edition. New York, USA: John Wiley and Sons InC. 389p.
  • [20] Kaplan, W. 1970. Advanced Calculus. New York, USA: House of Electronics Industry. 754p.
  • [21] Kreyszig, E. 1978. Introductory Functional Analysis With Applications. New York, USA: John Wiley and Sons. 704p.
  • [22] Lima, E. 2006. Um Curso de Anlise Vol. 2. Rio de Janeiro, Brazil: IMPA-Projeto Euclides. 546p.
  • [23] Li, Y and Dai, S. 2011. Finite element modelling of marine controlled-source electromagnetic responses in twodimensional dipping anisotropic conductivity structures. Geophysical Journal International, vol.185, 622–636.
  • [24] Monk, P. 2003. Finite Element Methods for Maxwell’s Equations. New York, USA: Oxford Science Publications. 465p.
  • [25] Monk, P. 1991. A finite element method for approximating the time-harmonic Maxwell equation. Numerische Mathematik, vol.63, 243–261.
  • [26] Monk, P. 2003. A simple Proof of Convergence for an Edge Element Discretization of Maxwell Equations. Lecture Notes in Computational Science and Engineering, vol.28, 127–141.
  • [27] Monk, P. and Parrot, A. 1994. Dispersion analysis of finite element methods for Maxwell equations. SIAM J. Sci. Comput., vol.15, 916–937.
  • [28] Monk, P. and Cohen, G. 1998. Gauss point mass lumping schemes for Maxwell equations. Numerical Methods for PDEs., vol.14, 63–88.
  • [29] Neˇcas, J. 1983 The Introduction to the Theory of Nonlinear Elliptic Equations. New York, USA: John Wiley and Sons. 264p.
  • [30] Nédélec, J. 1980 Mixed finite elements in R3. Numerische Mathematik, vol.35, 315–341.
  • [31] Nédélec, J. 1986. A new family of mixed finite elements in R3. Numerische Mathematik, vol.50, 57–81.
  • [32] Reddy, B. 1986. Funcional Analysis and Boundary-Value Problems: an Introductory Treatment. New York, USA: John Wiley and Sons. 426p.
  • [33] Smith, J. 2003. Human exposure assessment in the near field of GSM base-station antennas using a hybrid finite element/ method of moments technique. Biomedical Engineering IEEE, vol.50, 224–2
  • [34] Schwartz, M. Green, S. and Rutledge, W. 1960. Vector Analysis with Applications to Geometry and Phisics. New York, USA: Harper and Brothers. 353p.
  • [35] Thompson, L. and Pinsky, P. 1994. Complex wavenumber Fourier analysis of the p-version finite element method. Computat. Mech., vol.13, 255–275.
  • [36] Whitney, H. 1957. Geometry Integration Theory. New Jersey, USA: Princeton University Press. 341p.
Como citar:

Sebold, Jean Eduardo; Oliveira, Saulo Pomponet; Lacerda, Luiz Alkimin de; Carrer, José Antonio Marques; "WHITNEY/NE´DE´ LEC ELEMENTS METHOD APPROACH APPLIED IN THE MAXWELL’S EQUATIONS", p. 20-29 . In: Anais do Congresso Nacional de Matemática Aplicada à Indústria [= Blucher Mathematical Proceedings, v.1, n.1]. São Paulo: Blucher, 2015.
ISSN em b-reve, DOI 10.5151/mathpro-cnmai-0011

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações