fevereiro 2015 vol. 1 num. 2 - XX Congresso Brasileiro de Engenharia Química

Artigo - Open Access.

Idioma principal

THERMODYNAMIC ANALYSIS OF SYNTHESIS GAS PRODUCTION FROM AUTOTHERMAL REFORMING OF METHANE

SOUZA, T. L. de; SILVA, V. S. T. da; CARDOZO-FILHO, L.;

Artigo:

In this work a thermodynamic analysis of methane autothermal reforming (ATR) was performed to investigate syngas production using entropy maximization method. The main evaluated parameters were equilibrium compositions, including coke formation, syngas production, and equilibrium temperature.as a function of oxygen to methane mole ratio (O/M) and steam to methane ratio (S/M) at different inlet temperatures (IT) pressures (P).The nonlinear programming problem formulated was implemented in GAMS

Artigo:

Palavras-chave:

DOI: 10.5151/chemeng-cobeq2014-1090-21074-173156

Referências bibliográficas
  • [1] Akbari, M. H.; Ardakani, A. H. S.; Tadbir, M. A. A microreactor modeling, analysis and optimization for methane autothermal reforming in fuel cell applications. Chem. Eng. J., v. 166, p. 1116-25, 201
  • [2] 00204060803.00400 600 800 1000(H2+CO)/CH4Inlet Temperature (ºC) a) 800.00900.001,000.001,100.001,200.001,300.001,400.00400 600 800 1000Equilibrium Temperature (ºC) Inlet Temperature (ºC) b) Área temática: Engenharia das Separações e Termodinâmica 7Ayabe, S. ; Omoto, H.; Utaka, T.; Kikuchi, R.; Sasaki, K.; Teraoka, Y. et al. Catalytic autothermal reforming of methane and propane over supported metal catalysts. Appl. Catal. A: Gen., v. 241, p. 261-9, 2003.
  • [3] Basini, L. Issues in H2 and synthesis gas technologies for refinery, GTL and small and distributed industrial needs. Catal. Today, v. 106, p. 34-40, 2005.
  • [4] Chang, H. F.; Pai, W. J.; Chen, Y. J.; Lin, W. H. Autothermal reforming of methane for producing high-purity hydrogen in a Pd/Ag membrane reactor. Int. J. Hydrogen Energ., v. 35, p. 12986-92, 2010.
  • [5] Chen, W. H.; Lin, M. R.; Lu, J. J.; Chao, Y.; Leu, T. S. Thermodynamic analysis of hydrogen production from methane via autothermal reforming and partial oxidation followed by water gas shift reaction. Int. J. Hydrogen Energ., v. 35, p. 11787-97, 2010.
  • [6] Dantas, S. C.; Escritori, J. C.; Soares, R. R.; Hori, C. E. Effect of different promoters on Ni/CeZrO2 catalyst for autothermal reforming and partial oxidation of methane. Chem. Eng. J., v. 156, p. 380-7, 2010.
  • [7] Dias, J. A. C., Assaf, J. M. Autothermal reforming of methane over Ni/γ-Al2O3 catalysts: the enhancement effect of small quantities of noble metals. J. Power Sources, v. 130, p. 106-10, 2004.
  • [8] Escritori, J. C.; Dantas, S. C.; Soares, R. R.; Hori, C. E. Methane autothermal reforming nickel-ceria-zirconia based catalysts. Catal. Commun., v. 10, p. 1090-4, 2009.
  • [9] Gao, J.; Guo, J.; Liang, D.; Hou, Z.; Fei, J.; Zheng, X. Production of syngas via autothermal reforming of methane in a fluidized-bed reactor over the combined CeO2-ZrO2/SiO2 supported Ni catalysts. Int. J. Hydrogen Energ., v. 33, p. 5493-500, 2008.
  • [10] Hagh, B. F. Stoichiometric analysis of autothermal fuel processing. J. Power Sources, v. 130, p. 85-94, 2004.
  • [11] Halabi, M. H.; Croon, M. H. J. M.; van der Schaaf, J. Modeling and analysis of autothermal reforming of methane to hydrogen in a fixed bed reformer. Chem. Eng. J., v. 137, p. 568-78, 2008.
  • [12] Hoang, D. L.; Chan, S. H.; Ding, O. L. Hydrogen production for fuel cells by autothermal reforming of methane over sulfide nickel catalyst on a gamma alumina support. J. Power Sources, v. 159, p. 1248-57, 2006.
  • [13] Hou, K.; Hughes, R. The kinetics of methane steam reforming over a Ni/α-Al2O catalyst. Chem. Eng. J., v. 82, p. 311-28, 2001.
  • [14] Laosiripojana, N.; Assabumrungrat, S. Methane steam reforming over Ni/Ce-ZrO2 catalyst: Influences of Ce-ZrO2 support on reactivity, resistance toward carbon formation, and intrinsic reaction kinetics. Appl. Catal. A: Gen., v. 209, p. 200-11, 2005.
  • [15] Li, Y.; Wang, Y.; Zhang, X.; Mi, Z. Thermodynamic analysis of autothermal steam and CO2 reforming of methane. Int. J. Hydrogen Energ., v. 33, p. 2507-14, 2008.
  • [16] Área temática: Engenharia das Separações e Termodinâmica 8Liu, K.; Song. C.; Subramani, V. Hydrogen and Syngas Production and Purification Technologies. New Jersey: John Wiley Andamp; Sons; 2010.
  • [17] Liu, S.; Xiong, G.; Dong, H.; Yang, W. Effect of carbon dioxide on the reaction performance of partial oxidation of methane over a LiLaNiO/γ-Al2O3 catalyst. Appl. Catal. A: Gen., v. 202, p. 141-6, 2000.
  • [18] Liu, Z. W.; Jun, K. W.; Roh, H. S.; Park, S. E. Hydrogen production for fuel cells through methane reforming at low temperatures. J. Power Sources, v. 111, p. 283-7, 2002.
  • [19] Michelsen, M. L. State function based flash specifications. Fluid Phase Equilibria, v. 160, p. 617-26, 1999.
  • [20] Rabe, S.; Truong, T. B.; Vogel, F. Catalytic autothermal reforming of methane: Performance of a kW scale reformer using pure oxygen as oxidant. Appl. Catal. A: Gen., v. 318, p. 54-62, 2007.
  • [21] Reese, M. A.; Turn, S. Q.; Cui, H. Kinetic modeling of high pressure autothermal reforming. J. Power Sources, v. 195, p. 553-8, 2010.
  • [22] Santos, D. C. R. M.; Madeira, L.; Passos, F. B. The effect of the addition of Y2O3 to Ni/α-Al2O3 catalysts on the autothermal reforming of methane. Catal. Today, v. 149, p. 401-6, 2010.
  • [23] Simeone, M.; Salemme, L.; Allouis, C. Reactor temperature profile during autothermal methane reforming on Rh/Al2O3 catalyst by IR imaging. Int. J. Hydrogen Energ., v. 33, p. 4798-808, 2008.
  • [24] Souza, A. E. A. M.; Maciel, L. J. L.; Filho, M. L.; Abreu, C. A. M. Catalytic activity evaluation for hydrogen production via autothermal reforming of methane. Catal. Today, v. 149, p. 413-7, 2010.
  • [25] Souza, M. M. V. M.; Schmal, M. Autothermal reforming of methane over Pt/ZrO2/Al2O3 catalysts. Appl. Catal. A: Gen., v. 281, p. 19-24, 2005.
  • [26] Takeguchi, T.; Furukawa, S. N.; Inoue, M.; Koichi, E. Autothermal reforming of methane over Ni catalyst supported over CaO-CeO2-ZrO2 solid solution. Appl. Catal. A: Gen., v. 240, p. 223-33, 2003.
  • [27] Vagia, E. C.; Lemonidou, A. A. Thermodynamic analysis of hydrogen production via autothermal steam reforming of selected components of aqueous bio-oil fraction. Int. J. Hydrogen Energ., v. 33, p. 2489-500, 2008.
  • [28] Wang, H.; Wang, X.; Li, M.; Li, S.; Wang, S.; Ma, X. Thermodynamic analysis of hydrogen production from glycerol autothermal reforming. Int. J. Hydrogen Energ., v. 34, p. 5683-90, 2009.
Como citar:

SOUZA, T. L. de; SILVA, V. S. T. da; CARDOZO-FILHO, L.; "THERMODYNAMIC ANALYSIS OF SYNTHESIS GAS PRODUCTION FROM AUTOTHERMAL REFORMING OF METHANE", p. 15460-15468 . In: Anais do XX Congresso Brasileiro de Engenharia Química - COBEQ 2014 [= Blucher Chemical Engineering Proceedings, v.1, n.2]. São Paulo: Blucher, 2015.
ISSN 2359-1757, DOI 10.5151/chemeng-cobeq2014-1090-21074-173156

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações