Full Article - Open Access.

Idioma principal


Leite, R. C. V.; Frota, A. B.;

Full Article:

Urbanization can deeply compromise the city’s atmosphere through the modification of the environmental parameters such as air temperature and wind patterns. Therefore, great emphasis should be placed on heat generation and changes on natural ventilation conditions that directly lead to thermal discomfort, compromising building’s energetic performance. Specifically in cities with hot, humid climate, the case of Fortaleza, Ceará, Brazil (latitude 3° 43’ S), natural ventilation is the main passive strategy to obtain thermal comfort. Understanding the physical phenomenon and the aspects that influence natural ventilation process becomes crucial to objectively use the wind potential for naturally cooling of buildings. . However, it is becoming a major problem to naturally ventilate the building’s façades in dense urban centers, compromising the wind access to habitations. The airflow around buildings creates a pressure distribution over buildings façades, which it is an essential aspect to natural ventilation process. By creating high and low pressure zones over different parts of the building, the wind induces the air movement inside the building and once the city’s spatial organization directly influences building’s natural ventilation through the modification of pressure coefficients (Cp) over its surfaces. Once computational fluid mechanics is a valuable tool to analyze the wind behavior within urban areas it is widely used in researches to determine air movement characteristics of a given area or inside the buildings this tool is applied in this research, which evaluates different urban densification scenarios to determine the constructive limits that result in better or worse conditions to the air movement in high-rise apartments. The investigation is largely based on a computational Fluid Dynamics (CFD) tool to analyze the airflow around buildings and calculate the pressure coefficient and velocity field that are applied in the airflow predictions inside the apartments. The objective is to adopt a set of urban and architectural solutions in order to dissipate the heat and improve indoor thermal conditions using natural ventilation, reducing the need for artificial conditioning.

Full Article:

Palavras-chave: Natural ventilation, Urban densification, Pressure coefficient, Computational fluid mechanics, Thermal comfort.,


DOI: 10.5151/meceng-wccm2012-19803

Referências bibliográficas
  • [1] Chandler, T. J. “Urban Climatology and its Relevance to Urban Design”. Geneva, WMO. Technical Note 149, 1976.
  • [2] Oke, T. R. “Boundary Layer Climates”. 2 ed. London: Methuen, 1987.
  • [3] Oke, T. R. The urban energy balance. Progress in Physical Geography. 12, 1988.
  • [4] Bitan, A. The high climatic quality city of the future. Atmospheric Environment. 26B, 1992.
  • [5] Katzschner, L. Urban climate studies as tools for urban planning and architecture. In: IV Encontro Nacional de Conforto no Ambiente Construído. Salvador, 1997.
  • [6] Assis, E. S. Impactos da forma Urbana na Mudança Climática: Método para a previsão do Comportamento Térmico e melhoria de Desempenho no Ambiente Urbano. PhD thesis. Doutorado em Estruturas Ambientais Urbanas. Faculdade de Arquitetura e Urbanismo, Universidade de São Paulo, São Paulo, 2000.
  • [7] Duarte, D. H. S. Padrões de ocupação do solo e microclimas urbanos na região de clima tropical continental. PhD thesis. Faculdade de Arquitetura e Urbanismo da Universidade de São Paulo, São Paulo, 2000.
  • [8] International Energy Agency (IEA). World Energy Outlook 2008, Paris, France. Available from: http://www.worldenergyoutlook.org/docs/weo2008/WEO 2008_es_english.pdf [accessed 4/21/2009].
  • [9] International Energy Agency (IEA). Key World Energy Statistics, 2006.
  • [10] Pérez-lombard, L.; Ortiz, J.; Pout, C. A review on buildings energy consumption information. Energy and Buildings. 40, 394 – 398, 2008.
  • [11] Frota, A. B.; Schiffer, S. R. Manual de conforto térmico. Editora Nobel, 4 ed., São Paulo, 2000.
  • [12] Yarke, E. Ventilación natural de edificios. Nobuko: Buenos Aires, 2005.
  • [13] Liddament, M. W. (Ed). Air infiltration calculation techniques - an applications guide. AIVC: Great Britain, 1986.
  • [14] Allard, F. (Ed.). Natural ventilation in buildings: a design handbook. James Andamp; James: London: 1998.
  • [15] Cóstola, D., Alucci, M. P. Aplicação de CFD para o cálculo de coeficientes de pressão externos nas aberturas de um edifício. Ambiente Construído. 11, n. 1, p. 145-158, Porto Alegre, 2011.
  • [16] Costola, D., Blocken, B., Hensen, J. Overview of pressure coefficient data in building energy simulation and airflow network programs. Building and Environment. 44, 2027- 2036, 2009.
  • [17] Carrilho da Graça, G.; Chen, Q.; Glicksman, L. R.; Norford, L. K. Simulation of winddriven ventilative cooling systems for an apartment building in Beijing and Shanghai. Energy and Buildings. 34, 1 – 11, 2002.
  • [18] Prata, A. R. Impacto da altura de edifícios nas condições de ventilação natural do meio urbano. 2005. PhD Thesis. Faculdade de Arquitetura e Urbanismo, Universidade de São Paulo. São Paulo, 2005.
  • [19] Wang, L.; Wong, N. H. Coupled simulations for naturally ventilated rooms between building simulation (BS) and computational fluid dynamics (CFD) for better prediction of indoor thermal environment. Building and Environment. 44, 95 – 112, 2009.
  • [20] Leite, R. C. V. Fortaleza: terra do vento a influência da mudança nos padrões de ocupação do solo sobre a ventilação natural em cidade de clima tropical úmido. Master dissertation. Faculdade de Arquitetura e Urbanismo, Universidade de São Paulo. São Paulo, 2010.
  • [21] Asfour, O. S. Prediction of wind environment in different grouping patterns of housing blocks. Energy and Buildings. 42, 2061 – 2069, 2010.
  • [22] Cheung, J. O. P.; Liu, C. CFD simulations of natural ventilation behaviour in high-rise buildings in regular and staggered arrangements at various spacings. Energy and Buildings. 43, 1149 – 1158, 2011.
  • [23] Brager, G. S.; Dear, R. J. Thermal adaptation in the built environment: a literature review. Energy and Buildings. 27, 1998.
  • [24] Bittencourt, L.; Cândido, C. Introdução à ventilação natural. EDUFAL: Maceió, 2005.
  • [25] ANSYS. Computational fluid dynamic solutions. Canonsburg: ANSYS, 2005. Disponível em http://www.ansys.com/assets/brochures/cfd-solution-10.pdf acessed in 10/06/2011.
  • [26] Davidson, P. A. Turbulence: an introduction for scientists and engineers. Oxford University Press: Oxford, 2004.
Como citar:

Leite, R. C. V.; Frota, A. B.; "THE WIND AND THE CITY: EVALUATING THE LIMITS TO APPLY NATURAL VENTILATION FOR THERMAL COMFORT IN DENSE URBAN SETTLEMENTS USING A COMPUTATIONAL FLUID DYNAMICS TOOL.", p. 4285-4301 . In: In Proceedings of the 10th World Congress on Computational Mechanics [= Blucher Mechanical Engineering Proceedings, v. 1, n. 1]. São Paulo: Blucher, 2014.
ISSN 2358-0828, DOI 10.5151/meceng-wccm2012-19803

últimos 30 dias | último ano | desde a publicação