Full Article - Open Access.

Idioma principal

ON DIFFERENT SHELL MODELING IN NUMERICAL ANALYSES OF A COMPOSITE STIFFENED PANEL UNDER UNIFORM PRESSURE

Reinoso, J.; Blázquez, A.; París, F.; Irslinger, J.; Ramm, E.;

Full Article:

This work deals with the evaluation of the different modeling options based on the FEM to reproduce the structural performance of a composite stiffened panel in postbuckling regime under uniform pressure. Two fundamental modeling options are used for this purpose: monolithic and multi-part approaches. These strategies are based respectively on standard and 7-parameter finite element shell formulations as underlying mechanical theories. The numerical results obtained by means of these alternatives are compared with the experimental response of the panel with special emphasis in the postbuckling evolution of the behavior of the structure, and incorporating the initial geometric imperfections of the panel in the simulations.

Full Article:

Palavras-chave: J.Reinoso1, A. Blázquez1, F. Par´ıs1, J. Irslinger2, E. Ramm,

Palavras-chave:

DOI: 10.5151/meceng-wccm2012-19024

Referências bibliográficas
  • [1] Abramovich, H., Weller, T., Bisagni, C., “Buckling behavior of composite laminated stiffened panels under combined shear–axial compression”. J. Aircraft, 45(2):402–413, 2008.
  • [2] Andelfinger, U., Ramm, E., “EAS–Elements for two–dimensional, three–dimensional, plate and shells and their equivalence to HR–elements”. Int. J. Numer. Meth. Engng., 36:1413–1449, 1993.
  • [3] Bas¸ar, Y., Itskov, M., Eckstein, A., “Composite laminates: nonlinear interlaminar stress analysis by multi–layer shell elements”. Comput. Methods Appl. Mech. Engrg. 185:367–397, 2000.
  • [4] Bathe, K.–J., Dvorkin, E.N., “A four–node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation”. Int. J. Numer. Meth. Engng., 21:367–383, 1985.
  • [5] Betsch, P., Gruttmann, F., Stein, E., “A 4–node finite shell element for the implementation of general hyperelastic 3D–elasticity at finite strains”. Comput. Methods Appl. Mech. Engrg. 130:57-79, 1996.
  • [6] Bisagni, C. Cordisco, P., “Post–buckling and collapse experiments of stiffened composite cylindrical shells subjected to axial loading and torque”. Composite Structures, 73:138–149, 200
  • [7] Bischoff, M., Ramm, E., “Shear Deformable Shell Elements for Large Strains and Rotations”. Int. J. Numer. Meth. Engng., 40:4427–4449, 199
  • [8] Bischoff, M., “Theorie und Numerik einer dreidimensionalen Schalenformulierung”. Dissertation, Bericht Nr. 30, Institute of Structural Mechanics, University of Stuttgart, 1999.
  • [9] Bischoff, M., Ramm, E., “On the Physical Significance of Higher Order Kinematic and Static Variables in a Three–Dimensional Shell Formulation”. Int. J. Solids and Structures, 37,6933-6960, 2000.
  • [10] Blázquez, A., Picón, R., “Analytical and numerical models of postbuckling of orthotropic symmetric plates”. J. of Eng. Mechanics, 136(10):1299–1308, 20
  • [11] Blázquez, A., Reinoso, J., Par´is, F., Cañas, J., “Analysis in the postbuckling regime of a pressurized stiffened panel. Part II: Numerical analysis and effect of the geometric imperfections”, Composite Structures, 94(5):1544-1554, 2012.
  • [12] Bonet, J., Wood R.D., “Nonlinear continuum mechanics for finite element analysis”. Cambridge University Press, 1997.
  • [13] Braun, M., Bischoff, M., Ramm, E., “Nonlinear Shell Formulations for Complete Three– Dimensional Constitutive Laws Including Composites and Laminates”, Computational Mechanics, 15:1–18, 1994.
  • [14] Büchter, N., Ramm, E. and Roehl, D., “Three–dimensional extension of nonlinear shell formulation based on the enhanced assumed strain concept”, Int. J. Numer. Meth. Engng., 37:2551–2568, 1994.
  • [15] Carrera, E., “Theories and Finite Elements for Multilayered, Anisotropic, Composite Plates and Shells”, Arc. of Comp. Meth. Engng., 9:87–140, 2002.
  • [16] Falzon, B.G., Stevens, K.A., Davies, G.O., “Postbucking behaviour of a blade–stiffened composite panel loaded in uniaxial compression”. Composites Part A: Appl. Science Manufact., 31(5):459–468, 2000.
  • [17] Gruttmann, F., Wagner, W., “Structural analysis of composite laminates using a mixed hybrid shell element“. Computational Mechanics 37:479-497, 2006.
  • [18] Hibbitt, Karlsson and Serensen, “ABAQUS/STANDARD. User’s Guide and Theoretical Manual”. Version 6.8, 2008.
  • [19] Lanzi, L., “ A numerical and experimental investigation of composite stiffened panels into post–buckling”. Thin–Walled Structures 42:1645–1664, 2004.
  • [20] Miehe, C., “A theoretical and computational model for isotropic elastoplastic stress analysis in shells at large strains”. Comput. Methods Appl. Mech. Engrg. 155:193-233, 1998.
  • [21] Reddy , J.N. (1993) “An evaluation of equivalent single layer and layer–wise theories of composite laminates”, Composite Structures, 25:21-35.
  • [22] Reddy, J.N. (1997) “Mechanics of Laminated Composite Plates, Theory and Analysis”, CRC Press.
  • [23] Reinoso, J., Blázquez, A., Par´is, F., Cañas, J., Mel´endez, J.C., “Postbuckling behaviour of a pressurized stiffened composite panel. Part I: Experimental analysis”. Composite Structures 94(5):1533-1543, 2012.
  • [24] Reinoso, J., Blázquez, A., Estefani, A., Par´is, F., Cañas, J., Ar´evalo, E., Cruz, F., “Experimental and three–dimensional Global–Local Finite Element analysis of a composite component including degradation process at the interfaces”. Composites Part B: Engineering, 43(4):1929-1942, 2012.
  • [25] Reinoso J. “Study of composite stiffened panels in postbuckling regime”. PhD dissertation, University of Seville, 2012.
  • [26] Simo, J.C., Armero, F., “Geometrically non–linear enhanced strain mixed methods and the method of incompatible modes”. Int. J. Numer. Meth. Engng., 33:1413–1449, 1992.
Como citar:

Reinoso, J.; Blázquez, A.; París, F.; Irslinger, J.; Ramm, E.; "ON DIFFERENT SHELL MODELING IN NUMERICAL ANALYSES OF A COMPOSITE STIFFENED PANEL UNDER UNIFORM PRESSURE", p. 2766-2785 . In: In Proceedings of the 10th World Congress on Computational Mechanics [= Blucher Mechanical Engineering Proceedings, v. 1, n. 1]. São Paulo: Blucher, 2014.
ISSN 2358-0828, DOI 10.5151/meceng-wccm2012-19024

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações