Full Article - Open Access.

Idioma principal

NUMERICAL MODELING OF FLUID FLOWAND TIME-LAPSE SEISMOGRAMS APPLIED TO CO2 STORAGE AND MONITORING

Savioli, G. B.; Santos, J. E.; Carcione, J. M.; Gei, D.;

Full Article:

CO2 sequestration in the underground is a valid alternative approach for mitigating the greenhouse effect. Nevertheless, very little is known about the effectiveness of CO2 storage over very long periods. In this work we introduce a methodology to model the gas flow and monitor the storage. For this purpose, we integrate numerical simulators of CO2- brine flow and seismic wave propagation. The simultaneous flow of brine and CO2 is modeled with the Black-Oil formulation for two-phase flow in porous media, using PVT data as a simplified thermodynamic model. Wave propagation is based on an equivalent viscoelastic model that considers dispersion and attenuation effects. Densities and bulk and shear moduli are assumed to be dependent on pressure and saturation. The spatial pressure and CO2 saturation distributions computed with the flow simulator are used to determine the phase velocities and attenuation coefficients of the P and S waves from White‘s model. Numerical examples of CO2 injection and time-lapse seismograms are analyzed. The proposed methodology is able to identify the spatio-temporal distribution of CO2 after its injection, and constitutes an important tool to monitor the CO2 plume and analyze storage integrity, providing an early warning in case should any leakage may occur.

Full Article:

Palavras-chave: CO2 Sequestration, black-oil model, viscoelastic model,

Palavras-chave:

DOI: 10.5151/meceng-wccm2012-18455

Referências bibliográficas
  • [1] Arts R., Chadwick A., Eiken O., Thibeau S., Nooner S., “Ten years of experience of monitoring CO2 injection in the utsira sand at sleipner, offshore Norway”. First break 26, 65-72, 2008.
  • [2] Aziz K., Settari A., “Petroleum Reservoir Simulation”. Elsevier Applied Science Publishers, Great Britain, 1985.
  • [3] Biot M.A., “Theory of deformation of a porous viscoelastic anisotropic solid”. J. Appl. Phys. 27, 459-467, 1956.
  • [4] Biot M.A., “Mechanics of deformation and acoustic propagation in porous media”. J. Appl. Phys. 33, 1482-1498, 1962.
  • [5] Carcione, J. M., “Wave Fields in Real Media. Theory and numerical simulation of wave propagation in anisotropic, anelastic, porous and electromagnetic media”. Elsevier (Second edition, extended and revised), 2007.
  • [6] Carcione J.M., Picotti S., “P-wave seismic attenuation by slow-wave diffusion: Effects of inhomogeneous rock properties”. Geophysics 71(3), O1-O8, 200
  • [7] Carcione J.M., Gurevich, B., Cavallini, F., “A generalized Biot-Gassmann model for the acoustic properties of shaley sandstones”. Geophys. Prosp. 48, 539-557, 2000.
  • [8] Carcione J.M., Helbig K., Helle, H. B., “Effects of pressure and saturating fluid on wave velocity and attenuation of anisotropic rocks”. Int.J. Rock Mech. Min. Sci. 40, 389-403, 2003.
  • [9] Carcione J.M., Picotti S., Gei D., Rossi G., “Physics and seismic modeling for monitoring CO2 storage”. Pure and Applied Geophysics 163, 175-207, 2006.
  • [10] Chadwick A., Arts R., Eiken O., “4d seismic quantification of a growing CO2 plume at sleipner, North Sea”. Dore A G and Vincent B (Eds) Petroleum Geology: North West Europe and Global Perspectives - Proc. 6th Petroleum Geology Conference, 1385-1399, 2005.
  • [11] Douglas, Jr. J., Santos J.E., Sheen D., Ye X., “Nonconforming Galerkin methods based on quadrilateral elements for second order elliptic problems”. RAIROMathematicalModelling and Numerical Analysis (M2AN) 33, 747-770, 1999.
  • [12] Fanchi J., “Principles of Applied Reservoir Simulation”. Gulf Professional Publishing Company, Houston, Texas, 1997.
  • [13] Ha T., Santos J.E., Sheen D., “Nonconforming finite element methods for the simulation of waves in viscoelastic solids”. Comput. Meth. Appl. Mech. Engrg. 191, 5647-5670, 2002.
  • [14] Hassanzadeh H., Pooladi-DarvishM., Elsharkawy A., Keith D., Leonenko Y., “Predicting PVT data for CO2-brine mixtures for black-oil simulation of CO2 geological storage”. International Journal of Greenhouse Gas Control 2, 65-77, 2008.
  • [15] Liu H.P., Anderson D.L., Kanamori H., “Velocity dispersion due to anelasticity; implications for seismology and mantle composition”. Geophys. J. R. Astr. Soc. 147, 41-58, 1976.
  • [16] Santos J.E., Rubino J.G., Ravazzoli C.L., “Modeling mesoscopic attenuation in a highly heterogeneous biot’s medium employing an equivalent viscoelastic model”. Proc. 78th Annual International Meeting SEG (Las Vegas) 2212-2215, 2008.
  • [17] Savioli G., Bidner M.S., “Simulation of the oil and gas flow toward a well - a stability analysis”. Journal of Petroleum Science and Engineering 48, 53-69, 2005.
  • [18] Spycher N., Pruess K., “CO2-H2O mixtures in the geological sequestration of CO2. ii. partitioning in chloride brines at 12-100 c and up to 600 bar”. Geochim. Cosmochim, Acta 69 13, 3309-3320, 2005.
  • [19] White J.E., Mikhaylova N.G., Lyakhovitskiy F.M., “Low-frequency seismic waves in fluid-saturated layered rocks”. Izvestija Academy of Siences USSR, Physics of Solid Earth 10, 654-659, 1975.
  • [20] Zimmerman R. W., Somerton W. H., King, M. S., “Compressibility of Porous Rocks”. In Journal of Geophysical Research 91, 12765-12777, 1986.
  • [21] Zyserman F.I., Gauzellino P.M., Santos J.E., “Dispersion analysis of a non-conforming finite element method for the Helmholtz and elastodynamic equations”. Int. J. Numer. Meth. Engng. 58, 1381-1395, 2003.
Como citar:

Savioli, G. B.; Santos, J. E.; Carcione, J. M.; Gei, D.; "NUMERICAL MODELING OF FLUID FLOWAND TIME-LAPSE SEISMOGRAMS APPLIED TO CO2 STORAGE AND MONITORING", p. 1514-1528 . In: In Proceedings of the 10th World Congress on Computational Mechanics [= Blucher Mechanical Engineering Proceedings, v. 1, n. 1]. São Paulo: Blucher, 2014.
ISSN 2358-0828, DOI 10.5151/meceng-wccm2012-18455

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações