fevereiro 2015 vol. 1 num. 2 - XX Congresso Brasileiro de Engenharia Química

Artigo - Open Access.

Idioma principal

MUTUAL SOLUBILITIES OF HYDROCARBON-WATER SYSTEMSWITH F-SAC

POSSANI, L. F. K.; SOARES, R. de P.;

Artigo:

In this paper, the F-SAC model was extended in order to better representthe very low mutual solubility of hydrocarbons (alkanes, cycloalkanes, alkenes,cycloalkenes and aromatics) and water. Infinite dilution activity coefficient and liquid-liquid equilibrium data were considered. A new parameter for the computation of thewater self-association energy was proposed, enabling a better agreement withexperimental data in wide temperature ranges. The results were compared with someUNIFAC variants, found in the literature. For the systems studied, the proposed methodperformed better, including the quantitative representation of the experimentally observedminimum solubility point. None of UNIFAC models tested was capable of predicting suchbehavior. Finally, the model was used to predict the water solubility in petroleum fractionsby using a pseudo-components approach. With this approach, the F-SAC model wascapable of satisfactory represent the experimental data.

Artigo:

Palavras-chave:

DOI: 10.5151/chemeng-cobeq2014-1548-18716-153212

Referências bibliográficas
  • [1] GERBER, R. P.; SOARES, R. de P. Prediction of Infinite-Dilution Activity Coefficients Using UNIFAC and COSMO-SAC Variants. Ind. Eng. Chem. Res., v. 49 (16), p. 7488-7496, 2010.
  • [2] GERBER, R. P.; SOARES, R. de P. Assessing the reliability of predictive activity coefficient models for molecules consisting of several functional groups. Braz. J. Chem. Eng., v. 30 (1), p. 1-11,2013.
  • [3] GRISWOLD, J.; KASCH, J. E. Hydrocarbon-Water Solubilities at Elevated Temperatures and Pressures. Ind. Eng. Chem., v. 34 (7), p. 804-806, 1942.
  • [4] HUIBERS, P.D.; KATRITZKY, A.R. Correlation of the Aqueous Solubility of Hydrocarbons and Halogenated Hydrocarbons with Molecular Structure. J. of Chem. Inf. Comp. Sci., v. 38 (2), p. 283-292, 1998.
  • [5] JAKOB, A.; GRENSEMANN, H.; LOHMANN, J.; GMEHLING, J. Further Development of Modified UNIFAC (Dortmund): Revision and Extension Ind. Eng. Chem. Res., v. 45 (23), p. 7924-7933, 2006.
  • [6] KLAMT, A. Prediction of the mutual solubilities of hydrocarbons and water with COSMO-RS. Fluid Phase Equilib., v. 206 (1–2), p. 223-235, 2003.
  • [7] Área temática: Engenharia das Separações e Termodinâmica 7MACZYNSKI, A. IUPAC-NIST Solubility Data Series. 81. Hydrocarbons with Water and Seawater - Revised and Updated. Part 1. C5 Hydrocarbons with Water. J. Phys. Chem. Ref. Data, v. 34 (2), p. 278-441, 2005.
  • [8] MAGNUSSEN, T.; RASMUSSEN, P.; FREDENSLUND, A. UNIFAC parameter table for prediction of liquid-liquid equilibriums. Ind. Eng. Chem. Process Des. Dev., v. 20 (2), p. 331–339, 1981.
  • [9] OLIVEIRA, M. B.; COUTINHO, J.A.P.; QUEIMADA, A.J. Mutual solubilities of hydrocarbons and water with the CPA EoS. Fluid Phase Equilib., v. 258 (1), p. 58-66, 2007.
  • [10] POLAK, J.; LU, B. C.-Y. Mutual Solubilities of Hydrocarbons and Water at 0 and 25 °C. Can. J. of Chem., v. 51 (24), p. 4018-4023, 1973.
  • [11] POSSANI, L. F. K.; FLÔRES, G. B; STAUDT, P. B.; SOARES, R. de P. Simultaneous correlation of infinite dilution activity coefficient, vapor-liquid, and liquid-liquid equilibrium data with F-SAC. Fluid Phase Equilib., v. 364, p. 31-41, 2014.
  • [12] RIAZI, M. R. Characterization and Properties of Petroleum Fractions. Philadelphia: Editora ASTM International, 2005TSONOPOULOS, C. Thermodynamic analysis of the mutual solubilities of normal alkanes and water. Fluid Phase Equilib., v. 156 (1-2), p. 21-33, 1999.
  • [13] TSONOPOULOS, C., 2001. Thermodynamic analysis of the mutual solubilities of hydrocarbons and water. Fluid Phase Equilib., v. 186 (1-2), p. 185-206, 2001.
  • [14] SOARES, R. de P. The Combinatorial Term for COSMO-Based Activity Coefficient Models. Ind.Eng. Chem. Res., v. 50 (5), p. 3060-3063, 2011.
  • [15] SOARES, R. de P.; GERBER, R. P. Functional-Segment Activity Coefficient Model. 1. Model Formulation. Ind. Eng. Chem. Res., v. 52 (32), p. 11159-11171.
  • [16] SOARES, R. de P.; GERBER, R. P.; POSSANI, L. F. K., STAUDT, P. B. Functional-Segment Activity Coefficient Model. 2. Associating Mixtures. Ind. Eng. Chem. Res., v. 52 (32), p. 11172-11181.
  • [17] STAUDT, P. B.; SOARES, R. de P. A Self-Consistent Gibbs Excess Mixing Rule for Cubic Equations of State. Fluid Phase Equilib., v. 334, p. 76-88, 2012.
  • [18] VOUTSAS, E. C.; TASSIOS, D. P. Analysis of the UNIFAC-Type Group-Contribution Models at the Highly Dilute Region. 1. Limitations of the Combinatorial and Residual Expressions. Ind. Eng. Chem. Res., v. 36 (11), p. 4965–4972, 1997.
  • [19] VRTech, iiSE – Industrial Integrated Simulation Environment, available at http://www.vrtech.com.br, 2014.
Como citar:

POSSANI, L. F. K.; SOARES, R. de P.; "MUTUAL SOLUBILITIES OF HYDROCARBON-WATER SYSTEMSWITH F-SAC", p. 15776-15783 . In: Anais do XX Congresso Brasileiro de Engenharia Química - COBEQ 2014 [= Blucher Chemical Engineering Proceedings, v.1, n.2]. São Paulo: Blucher, 2015.
ISSN 2359-1757, DOI 10.5151/chemeng-cobeq2014-1548-18716-153212

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações