fevereiro 2015 vol. 1 num. 2 - XX Congresso Brasileiro de Engenharia Química

Artigo - Open Access.

Idioma principal

MASS INTEGRATION APPLIED TO SUGARCANE BIOREFINERY USING THE MODIFIED FLEXIBLE TOLERANCE METHOD

LIMA, A. M.; FURLAN, F. F.; CRUZ, A. J. G.; KWONG, W. H.;

Artigo:

This paper presents the application of mass integration methodology to a sugarcane biorefinery, using a modified flexible tolerance method (MFTM) for optimization. For environmental reasons, the targets for mass integration were water, emissions of carbon dioxide from the fermentation process, and vinasse. The MFTM presented good performance in optimization of the process configuration, with reductions of 29, 28, and 33% in the costs of fresh water supply, wastewater treatment, and vinasse fertirrigation (including the costs associated with vinasse concentration), respectively. In addition, emissions of CO2 were avoided using algae farm technology for ethanol production, resulting in benefits to the environment as well as economic advantages including carbon credits and additional ethanol production. 1. INTRODUCTION The production of ethanol from lignocellulosic materials has been extensively studied because it increases the amount of ethanol that can be produced from the same crop area, hence helping to meet the growing demand for biofuel. Environmental issues and the rise in petroleum costs have also stimulated research into the production of alternative fuels from renewable raw materials. Two options have been evaluated for fuel production from lignocellulosic raw materials, namely the use of dedicated crops, such as willow and elephant grass, and full utilization of the biomass derived from other processes, such as wastes from agricultural (wheat straw, sugarcane bagasse, and corn stover) and forestry sources. Due to the large-scale production of ethanol from sugarcane in Brazil, sugarcane bagasse is one of the most suitable materials available for second-generation ethanol production, despite competition with the use of this material for energy production. However, the processes (biochemical and/or thermochemical) are not yet available for large-scale production, due to the high costs of enzymes and catalysts, low productivity, low profit margins, and difficulty in scaling up the hydrolysis step. Mass integration methodology can be used to determine the minimum consumption of materials and utilities (solvents, water, etc.), minimum discharge of wastes, minimum purchase of fresh raw materials, minimum production of undesirable by-products, and maximum outputs of desirable products. The mass targets that need to be considered in the case of a sugarcane biorefinery include the minimum purchase of fresh water, the minimum expense with wastewater treatment, the minimum expense with vinasse fertirrigation, and recovery of carbon dioxide at the lowest cost and with the highest profit in terms of products. Área temática: Simulação, Otimização e Controle de Processos 1The aim of the present work was to apply mass integration methodology to a sugarcane biorefinery, using a modified flexible tolerance method for the optimization task.

Artigo:

Palavras-chave:

DOI: 10.5151/chemeng-cobeq2014-1610-18446-176585

Referências bibliográficas
  • [1] ANP, Agência Nacional do Petróleo, Gás Natural e Biocombustíveis . Resumo dos leilões na fase da mistura obrigatória - 2012, 2012.
  • [2] ARAUJO, E. C. C. Evaporadores. EdUFSCar, SP, Brazil, 2007.
  • [3] Área temática: Simulação, Otimização e Controle de Processos 7CARVALHO, T. C. Redução do volume de vinhaça através do processo de evaporação. Master’s thesis (in Portuguese), State University of São Paulo (UNESP), Faculty of Mechanical Engineering, 2010.
  • [4] CASTRO, S. B.; ANDRADE, S. A. C. Tecnologia do Açúcar . Editora Universitária UFPE, PE, Brazil, 2007.
  • [5] CERES, Inteligência Financeira. Estudo de viabilidade técnica e econômica de um grupo selecionado de tecnologias inovadoras relacionadas à cadeia sucroenergética. Relatório técnico, MDIC, 2013.
  • [6] CUNHA, L. C.; POIANI, L. M.; GUBULIN, J. C. Análise das viabilidades técnica e econômica para produção de bicarbonato de sódio a partir de dióxido de carbono residual de processos fermentativos. In: VI Congresso de Meio Ambiente da AUGM , São Carlos, 2009.
  • [7] EL-HALWAGI, M. M. Sustainable Design Through Process Integration. Butterworth-Heinemann, 2012.
  • [8] FURLAN, F. F.; FILHO, R. T.; PINTO, F. H. P. B.; COSTA, C. B. B.; CRUZ, A. J. G.; GIORDANO, R. L. C.; GIORDANO, R. C. Bioelectricity versus bioethanol from sugarcane bagasse: is it worth being flexible? Biotechnol. Biofuels, 6(1), 1-12, 2013.
  • [9] Investing.com. Crédito carbono, 2012.
  • [10] JornalCana. Cobrança pelo uso da água ganha impulso em regiões de usinas, 2011.
  • [11] LIMA, A. M.; CRUZ, A. J. G.; KWONG, W. H. Constrained nonlinear optimization using modified flexible tolerance method: Application in mass integration. Braz. J. Chem. Eng. (submitted), 2014.
  • [12] PECEGE. Custos de produção de cana-de-açúcar, açúcar e etanol no Brasil: Fechamento da safra 2011/20 Relatório técnico, ESALQ, Piracicaba, 20
  • [13] QINGDAO Sonef Chemical Company Limited. Sodium bicarbonate. 2014.
  • [14] REIN, P. Cane Sugar Engineering. Verlag Dr. Albert Bartens KG, Berlin, Germany, 2007.
  • [15] ROCHA, M. H. Uso da análise do ciclo de vida para comparação do desempenho ambiental de quatro alternativas para tratamento da vinhaça. Master’s thesis (in Portuguese), Federal University of Itajubá, Institute of Mechanical Engineering, 2009.
  • [16] SANTOS, D.; REBELATO, M.; RODRIGUES, A. Análise da viabilidade econômica de uma planta para captura de CO2 na indústria alcooleira. Revista Gestão e Tecnologia, 12, 64-88, 2012.
  • [17] SAT, SEE ALGAE Technology GmbH. Commercial infrastructure for production of algae-based compounds. 2012.
  • [18] SILLA, H. Chemical Process Engineering: Design and Economics. Taylor Andamp; Francis, 2003.
  • [19] TURTON, R. Capcost software. 1998.
  • [20] XU, Y.; ISOM, L.; HANNA, M. A. Adding value to carbon dioxide from ethanol fermentations. Bioresour. Technol., 101, 3311-3319, 2010.
Como citar:

LIMA, A. M.; FURLAN, F. F.; CRUZ, A. J. G.; KWONG, W. H.; "MASS INTEGRATION APPLIED TO SUGARCANE BIOREFINERY USING THE MODIFIED FLEXIBLE TOLERANCE METHOD", p. 12688-12695 . In: Anais do XX Congresso Brasileiro de Engenharia Química - COBEQ 2014 [= Blucher Chemical Engineering Proceedings, v.1, n.2]. São Paulo: Blucher, 2015.
ISSN 2359-1757, DOI 10.5151/chemeng-cobeq2014-1610-18446-176585

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações