Full Article - Open Access.

Idioma principal

Evolutionary Topology Optimization for Fluid-structure Interaction Problems and Natural Frequency Maximization

Picelli, R.; Vicente, W. M.; Pavanello, R.;

Full Article:

Multiphysics systems including dynamic fluid-structure interaction problems have hardly been studied in several fields of mechanical engineering. Among others, we can cite the researches in vibrations of submerged structures and the design of poroacoustic absorbing systems. Structural Topology Optimization can be applied in this class of problems in order to obtain new materials and structures. In this paper, it is presented the topology optimization based on volume constraints and natural frequency maximization of fluid-structure interaction problems. The method used in this work is the Bi-directional Evolutionary Structural Optimization (BESO), which consists in a successive elimination and replacement of elements in the design domain. This domain is defined initially and through a sensitivity analysis of the structure’s eigenvalue solution, the evolutionary algorithm remove or add solid elements. The aim of this work is to propose a new version of the BESO method applied to fluid-structure interaction systems. We consider the case of free vibration of structures attached to a fixed fluid domain. Numerical results show that the BESO method can be applied to this kind of multiphysics problem.

Full Article:

Palavras-chave: Fluid-structure interaction, Topology Optimization, BESO method.,


DOI: 10.5151/meceng-wccm2012-16801

Referências bibliográficas
  • [1] Bendsoe, M. P. and Sigmund, O., “Generating optimal topologies in structural design”. Comput Methods Appl Mech Eng 71, 197-224, 1988.
  • [2] Bendsoe, M. P. and Sigmund, O., “Topology Optimization - Theory, Methods and Applications”. Berlin, Heidelberg, Springer-Verlag, 2003.
  • [3] Yoon, G. H., “Topology Optimization for stationary fluid-structure interaction problems using a new monolithic formulation”. Int J Numer Meth Eng 82, 591-616, 2010.
  • [4] Xu, Z. S., Huang, Q. B. and Zhao, Z. G., “Topology optimization of composite material plate with respect to sound radiation”. Eng Anal Bound Elem 35, 61-67, 2011.
  • [5] Jang, G. W., Kim, K. J. and Kim, Y. Y., “Integrated topology and shape optimization for compliant MEM’s mechanism design”. Advanc Eng Soft 39, 1-14, 2010.
  • [6] Silva, F. I. and Pavanello, R., “Synthesis of porous-acoustic absorbing systems by an evolutionary optimization method”. Eng Optimiz 42, 887-905, 2010.
  • [7] Sigmund, O. and Clausen, P. M., “Topology optimization using a mixed formulation: An alternative way to solve pressure load problems”. Comput Methods Appl Mech Eng 196, 1874-1889, 200
  • [8] Maute, K. and Allen, M., “Conceptual design of aeroelastic structures by topology optimization”. Struct Multidiscip Optimiz 27, 27-42, 2004.
  • [9] Bendsoe, M. P. and Sigmund, O., “Material interpolation schemes in topology optimization”. Arch Appl Mech 69, 635-654, 199
  • [10] Hamidian, D, and Seyedpoor, S. M., “Shape optimal design of arch dams using an adaptive neuro-fuzzy inference system and improved particle swarm optimization”. Appli Math Model 34, 1574-1585, 20
  • [11] Kreissl, S., Pingen, G, Evgrafov, A. and Maute, K., “Topology optimization of flexible micro-fluidic devices”. Struct Multidiscip Optimiz 42, 495-516, 2010.
  • [12] Xie, Y. M., Steven, G. P., “A simple evolutionary procedure for structural optimization”. Comput Struct 49, 885-896, 1993.
  • [13] Querin, O. M. and Steven, G. P., “Evolutionary structural optimisation (ESO) using a bidirectional algorithm”. Eng Comput 15, 1031-1048, 1998.
  • [14] Huang, X. and Xie, Y. M, “Convergent and mesh-independent solutions for the bidirectional evolutionary structural optimization method”. Finite Elem Anal Des 43, 1039- 1049, 2007.
  • [15] Huang, X. and Xie, Y. M, “Evolutionary topological optimization of vibrating continuum structures for natural frequencies”. Comput Struct 88, 357-364, 2010.
  • [16] Rozvany, G. I. N., “A critical review of established methods of structural topology optimization”. Struct Multidiscip Optimiz 37, 217-237, 2009.
  • [17] Huang, X. and Xie, Y. M, “A further review of ESO type methods for topology optimization”. Comput Struct 41, 671-683, 2010.
  • [18] Xie, Y. and Huang, X., “Evolutionary Topology Optimzation of Continuum Structures: Methods and Applications”. West Sussex, John Wiley Sons, 1st edition, 2010.
  • [19] Davidsson, P., “Structure-acoustic analysis; Finite element modelling and reduction methods”. Doctoral Thesis. Lund University, Lund, Sweden, 2004.
  • [20] Pedersen, N. L., “Maximization of eigenvalues using topology optimization”. Struct Multidiscip Optimiz 20, 2-11, 2000.
  • [21] Huang, X. and Xie, Y. M., “Bi-directional evolutionary topology optimization of continuum structures with one or multiple materials”. Comput Mech 43, 393-401, 2009.
  • [22] Sigmund, O. and Peterson, J., “Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima”. Struct Optimiz 16, 68-75, 1998.
Como citar:

Picelli, R.; Vicente, W. M.; Pavanello, R.; "Evolutionary Topology Optimization for Fluid-structure Interaction Problems and Natural Frequency Maximization", p. 423-437 . In: In Proceedings of the 10th World Congress on Computational Mechanics [= Blucher Mechanical Engineering Proceedings, v. 1, n. 1]. São Paulo: Blucher, 2014.
ISSN 2358-0828, DOI 10.5151/meceng-wccm2012-16801

últimos 30 dias | último ano | desde a publicação