fevereiro 2015 vol. 1 num. 2 - XX Congresso Brasileiro de Engenharia Química

Artigo - Open Access.

Idioma principal

EVALUATION OF THE PROPERTIES OF POLYPROPYLENE / BANANA FIBRE BIOCOMPOSITES.

CONINCK, C. T. P.; BITENCOURT, L. G. S.; CARPENTER, D. E. O. S.; BARCELLOS, I. O. B.;

Artigo:

A new bio-composite was developed by adding banana tree fibres to a polypropylene matrix. Banana fibre was chosen due to its abundance and relative low coat. The physical, chemical, mechanical and thermal properties of the bio-composite were investigated. The material was characterized using the following tests; Izod impact resistance, tensile strength, hardness, specific weight and differential scanning Calorometry (DSC). The banana fibres (BF) were extracted from pseudosterm of banana tree and mixed with a thermoplastic polypropylene (PP) compound in the proportions of 90/10% (PP/BF), 80/20% (PP/BF) e 70/30% (PP/BF) by weight, using an extrusion process to prepare the samples. The properties were compared with PP (100%). The composites made of PP matrix containing banana fibre showed an improvement in impact properties as well as specific weight and thermal conductivity. Chemical and thermal stability also improved. 1. INTRODUCTION Polypropylene (PP) is a very important semi crystalline thermoplastic for technological applications due to its strength, excellent melt processability, fast crystallization, low density, good mechanical properties and high thermal stability. Polypropylene has a long-term durability against environmental degradation and may experience some biodegradability if mixed with natural fibres (Xiaofei et al., 2008; Howard, 2002). The difficulty of synthetic polymer materials to degrade led to the development of sugar biopolymers. (Howard, 2002). However the mechanical properties of biopolymers are inferior to synthetic polymers for the majority of the commercial applications. Composites are very singular materials as they distribute the properties of all components. The most used materials for reinforcement of polymer composites by the plastic industry are natural fibres and minerals (Park et al., 2008). In the last decade a huge emphasis has been made on the fabrication and use of polymer natural fibre composites instead of synthetic fibres such as glass fibre, carbon fibre, Kevlar amongst others mainly because of costs and the environmental impact these materials cause (Barcellos et al., 2009; Martinelli, 2008). Biodiversity allows an enormous amount of natural vegetable fibre options that could be used in polymer composites. Furthermore vegetable fibres are renewable resources with a high potential to modify thermoplastic. The most common are; sisal, jute, curaua, coconut, sugar cane bagasse, wood powder and banana tree fibre. Kaemple et al. (2002) observed that PP natural fibre composites require special preparation of the fibres prior impregnation into

Artigo:

Palavras-chave:

DOI: 10.5151/chemeng-cobeq2014-0021-27500-182804

Referências bibliográficas
  • [1] ALVES, V.; COSTA, N.; HILLIOU, L.; LAROTONDA, F.; GONÇALVES, M.; SERENO, A.; COELHOSO, I. Design of biodegradable composite films for food packaging Desalination. v. 199, p. 331 – 333, 2006.
  • [2] AMERICAN SOCIETY FOR TESTING AND MATERIALS. ASTM D256: Standard Test Method for Determining the Izod Pendulum Impact Resistance of Plastics. AMERICAN SOCIETY FOR TESTING AND MATERIALS. ASTM D638-77: Standard Test Method for Tensile Propreties of Plastics. AMERICAN SOCIETY FOR TESTING AND MATERIALS. ASTM D792: Standard Test Method for Density and Specific Gravity (Relative Density) of Plastics by Displacement. Área temática: Engenharia de Materiais e Nanotecnologia 6BARCELLOS, I.O. ; SOUZA, A. C.; SELKE, A. E. Incorporação de Lodo Industrial em compósitos de Resina de Poliéster. Polímeros: Ciência e Tecnologia. v. 19, n. 2, p. 155 – 159, 2009.
  • [3] BORGER, A.; HEISE, B.; TROLL, C.; MARTI, O.; RIEGER, B. Mechanical and Temperature Dependant Properties Structure and Phase Transitions of Elastic Polypropylene. Europen Polymer Journal, v. 43, p. 634-643, 2007.
  • [4] BUSICO, V., CIPELLO, R. Microstructure of Polypropylene. Prog. Polym. Sci, v. 26, p. 443-533, 2001.
  • [5] DIAZ, A. Polipropileno e policarbonato. 1999. 41f. Dissertação (Mestrado)- Escola de engenharia do departamento de engenharia química – DEQUI – UFRS, Porto Alegre, 1999.
  • [6] FRANCO, P.J. H.; GONZÁLEZ, A.V. Mechanical properties of continuous natural fibre-reinforced polymer composites . Composites: Part A. v. 35, p. 339-345. 2003.
  • [7] GEORGE, J.; BHAGAWAN, S.S.; THOMAS, S. Thermogravimetric and dynamic mechanical thermal analysis of pineapple fibre reinforced polyethylene composites. Journal of thermal analysis, v. 47, p. 1121-1140, 1996.
  • [8] HOWARD, G. T. Biodegradation of Polyurethane a Review International Biodeterioration Andamp; Biodegradation. v. 49, p. 245-252, 2002.
  • [9] ICHAZO, M.N.; ALBANO, C.; GONZÁLES, J.; PERERA, R.; CONDAL, M.V. Polypropylene/wood flour composites: treatments and properties. Composite Structures, v. 54, p. 207-214, 2001 . IDICULA, M.; BOUDENNE, A.; UMADAVI, L.; IBOS, L.; CANDAU, Y.; THOMAS, S. Thermophysical properties of natural fibre reinforced polyester composites . Composites Science and Technology. v. 66, p. 2719– 2725, 2006.
  • [10] JOSEPH, V.; MATHEW, G.; JOSEPH, K.; GROENINCKX, G.; THOMAS, S. Dynamic mechanical properties of short sisal fibre reinforced polypropylene composites Composites Part A . v. 34, p. 275 – 290, 2003.
  • [11] KAEMPLER, D.; RALFTHOMANN; MÜLHOUPT, R. Melt Compounding of Sydiotactic Polypropylene Nanocomposites containing organophilic Layered Silicates and in Situ Formed Core/ Shell Nanoparticles. Polymer. v. 43, p. 2909-2916, 2002.
  • [12] LIU, H.; WU, Q.; ZHANG, Q. Preparation and properties of banana fibre-reinforced composites based on high density polyethylene (HDPE)/Nylon-6 blends . Bioresource Technology. v. 100, p. 6088 – 6097, 2009.
  • [13] MARTINELI, A. L. Desenvolvimento de Compósitos Poliméricos com Fibras Vegetais Naturais da Biodiversidade: uma Contribuição para a Sustentabilidade Amazônica . Polímeros: Ciência e Technologia. v.18, n. 2, p. 92 – 99, 2008.
  • [14] MOURAD, A. I. Thermomechanical Characteristics of Thermally age PE/PP Blends. Materials Andamp; Design. v. 31, p. 918-929, 2010.
  • [15] MUKHOPADHYAY, S. et al. Effect of ageing of sisal fibres on properties of sisal – Polypropylene composite . Polymer Degradation and Stability. v. 93, p. 2048 – 2051, 2008.
  • [16] PARK, Y.; DOHERTY. W.O.S.; HALLEY, P.J. Development of Lignin Based Resin Coatings and Composites. Industrial Crops and Products, v. 27, p.163 – 167, 2008.
  • [17] PRACELLA, M. et al. Functionalization, compatibilization and properties of polypropylene composites with Hemp fibres. Composites Science and Technology. v.66, p. 2218 – 2230, 2006.
  • [18] RAHMAN, R.; HUQUE, M.; ISLAM, N.; NASAN, M. Improvement of physico-mechanical properties of jute fibre reinforced polypropylene composites by post-treatment . Composites. Part A. v. 39, p.1739 – 1747, 2008.
  • [19] Área temática: Engenharia de Materiais e Nanotecnologia 7RISSON, P.; CARVALHO, G.A.; VIEIRA, S. L.; ZENI, M.; ZATTERA, A. J. Reaproveitamento de Resíduos de Laminados de Fibra de Vidro na Confecção de Placas Reforçadas de Resina Poliéster . Polímeros: Ciência e Tecnologia, v. 3, p. 89 – 92, 1998.
  • [20] ROHLMANN, C. O.; HORST, M. F.; QUINZANI, L. M.; D. PAILLA, M. Comparative Analysis of Nanocomposites Based on Polypropylene and Different Montmorillonites. Europen Polymer Journal. v. 44, p. 2749-2760, 2008 . SELKE, A. E. Compósitos Estruturais de Poliéster: Aproveitamento de Lodo Industrial e Fibras de Crisotila e Blenda Náilon 6.6/Quitosana. Dissertação (Mestrado) – Departamento de Quimica, FURB, Blumenau, 2007.
  • [21] SHIBATA, S.; CAO, Y.; FUKUMOTO, I. Lightweight laminate composites made from kenaf and polypropylene fibres . Polymer Testing. v. 25, p. 142-148, 2005.
  • [22] SMITH, W. F. Princípios de Ciência e Engenharia dos Materiais. 3. ed. Portugal: McGraw-Hill, 1996.
  • [23] VU-KHANH, T., MAJDOUBI, M.E. Entropy Change with Yielding and Fracture of Polypropylene. Theoretical and Applied Fracture Mechanics, v. 51, p. 111-116, 2009.
  • [24] WANG, S. W.; YONG, W.; BONG, Y. J.; XIE, H.; YONG, M.; PENG, X. F. Crystalline Morphology of  nucleated Controlled Reology Polypropylene. Polymer Testing. v. 27, p. 638-644, 2008.
  • [25] XIAOFEI, M.; CHANG, P. R.; YU, J. Properties of diodegradable thermoplastic pea starch/carboxymethyl cellulose and pea starch/microcrystalline cellulose composites. Carbohydrate Polymers. v. 72, p. 369-375, 2008.
  • [26] YANG, W.; LIU, Z.; SHAN, G.; MING, Z.; XIE, L. B.; YANG, M. Study on The Melt Flow Behaviour of Glass Bead Filled Polypropylene. Polymer Testing. v. 24, p. 490-497, 2005.
Como citar:

CONINCK, C. T. P.; BITENCOURT, L. G. S.; CARPENTER, D. E. O. S.; BARCELLOS, I. O. B.; "EVALUATION OF THE PROPERTIES OF POLYPROPYLENE / BANANA FIBRE BIOCOMPOSITES.", p. 13149-13156 . In: Anais do XX Congresso Brasileiro de Engenharia Química - COBEQ 2014 [= Blucher Chemical Engineering Proceedings, v.1, n.2]. São Paulo: Blucher, 2015.
ISSN 2359-1757, DOI 10.5151/chemeng-cobeq2014-0021-27500-182804

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações