fevereiro 2015 vol. 1 num. 2 - XX Congresso Brasileiro de Engenharia Química

Artigo - Open Access.

Idioma principal




ABSTRACT. In the last 15 years researches have aimed a more efficient use of agroindustrial residues for the production of fuels such as ethanol obtained from sugarcane bagasse. However, in this case, the production in large scale using this raw material is still unfeasible. One of the reasons for this unfeasibility is the knowledge required for the development of hydrolysis step due to reaction complexity and high cost of enzymes. In order to enhance this step, the use of reactor can create an environment that allows a maximum conversion of cellulose with a minimum quantity of enzymes. Thus, the aim of this work is to use a rotating drum reactor able to process a large amount of biomass. However, at high solid loadings of this substrate, the viscosity of the medium will be very high and other factors should also be considered, such as mixing, mass and heat transfer limitations. The present paper deals with the analysis of the enzymatic hydrolysis process of sugarcane bagasse performed in rotating drum reactor (working volume of 4 L), using bagasse (10 w/v) and commercial cellulase enzyme. In this study sugarcane bagasse was submitted, firstly, chemical pretreatment that consisted of two consecutive steps, the first with dilute sulfuric acid (1 % H2SO4), and the second with alkaline solution of NaOH (1%). Hydrolyses were performed with an enzyme load of 7 and 15 FPU/g (dry weight) of bagasse with periodic sampling for the measurement of the concentration of glucose. The results of the experiments showed an increase in the glucose concentration (g L-1) due to the mass transfer and mixing allowing a larger contact area of the enzyme with the substrate (sugarcane bagasse) in the reactor.



DOI: 10.5151/chemeng-cobeq2014-0666-24524-177587

Referências bibliográficas
  • [1] BANSAL, P; HALL, M.; REALFF, M.J; LEE, J.H; BOMMARIUS, A.S. Modeling cellulase kinetics on lignocellulosic substrates. Biotechnol. Adv., v. 27, p. 833–848, 2009.
  • [2] CRUZ, G.; MONTEIRO, P.A.S; BRAZ, C.E.M.; SELEGHIM JR., P; POLIKARPOV, I. CRNKOVIC, P.M. Thermal and morphological evaluation of chemically pretreated sugarcane bagasse, In: World Academy of Science, Engineering and Technology (WASET), 2013, Paris. World Academy of Science, Engineering and Technology (WASET). Paris, 2013. v. XVII. p. 2179-2184, 2013.
  • [3] GALBE M.; ZACCHI G. A review of the production of ethanol from softwood. Appl. Microb. Biotechnol. v. 59, p. 618–28, 2002.
  • [4] GAN, Q.; ALLEN, S.J.; TAYLOR, G. Kinetic dynamics in heterogeneous enzymatic hydrolysis of cellulose: an overview, an experimental study and mathematical modeling. Process Biochem., v. 38, p. 1003-1018, 2003.
  • [5] GHOSE, T. K. Pure and Applied Chemistry. J. Chemical Physics, v. 59 (2), p. 257–268, 1987.
  • [6] GRAJALES, L.M.; XAVIER, N.M; HENRIQUE, J.P; THOMÉO, J.C. Mixing and motion of rice particles in a rotating drum. Powder Technol., v. 222, p. 167-175, 2012.HARDIN, M; HOWES, T; MITCHELL, D. Mass transfer correlations for rotating drum bioreactors. J. Biotechnol., v. 97, p. 89 – 101, 2002.
  • [7] LYND, L.R; LASER, M.S; BRANSBY, D; DALE, B.E; DAVISON, B; HAMILTON, R. How biotech can transform biofuels. Nature Biotechnol. , v. 26, p. 169–72, 2008.
  • [8] MELLMANN, J. The transverse motion of solids in rotating cylinders-forms of motion and transition behavior. Powder Technol., v. 118, p. 251-270, 2001.OGEDA, T.L.; PETRI, Área temática: Processos Biotecnológicos 7D.F.S. Hidrólise enzimática de biomassa. São Paulo: Quím. Nova, v. 33 (7), p. 1549-1558, 2010.
  • [9] MITCHELL, D.A.; STUART, D.M.; HARDIN, M.T.; KRIEGER, N. Rotating-Drum and Stirred-Drum Bioreactors. In: Solid-State Fermentation Bioreactors – Fundamentals of design and operation. Berlin: Springer-Verlag cap.8, 2006.
  • [10] OGEDA, T.L.; PETRI, D.F.S. Hidrólise enzimática de biomassa. São Paulo: Quím. Nova, v.33 (7), p. 1549-1558, 20
  • [11] O’DWYER J.P.; ZHU, L.; GRANDA C.B.; HOLTZAPPLE M.T. Enzymatic hydrolysis of lime-pretreated corn stover and investigation of the HCH-1 Model: Inhibition pattern, degree of inhibition, validity of simplified HCH-1 Model. Bioresource, v. 98, p. 2969-2977, 2006.
  • [12] PEREIRA, L.T.C.; TEIXEIRA, R.S.S.; BON, E.P.S.; FREITAS, S.P. Sugarcane bagasse enzymatic hydrolysis: rheological data as criteria for impeller selection. J. Ind. Microbiol. Biotechnol., v. 38, p. 901–907, 2011.
  • [13] RABELO, S. Avaliação e otimização de pré-tratamentos e hidrólise enzimática do bagaço de cana-de-açúcar para a produção de etanol de segunda geração. (in Portuguese). Tese Doutorado – Unicamp. (2010). REZENDE, C.A.; LIMA, M.A.; MAZIEIRO, E.R.; AZEVEDO, E.R.; GARCIA, W.; POLIKARPOV, I. Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility. Biotechnol. Biofuels, v. 4 (54), p. 1-19, 2011.
  • [14] SALLES, P. Avaliação de um reator tipo tambor rotativo para hidrólise enzimática do bagaço de cana-de-açúcar. Dissertação Mestrado (in Portuguese). Escola de Engenharia de São Carlos. Departamento de Engenharia Mecânica. (2013). SOCCOL C. R.; VANDENBERGHE L.P.S.; MEDEIROS A.B.P.; KARP S.G.; BUCKERIDGE M.; RAMOS L.P.; PITARELO A.; FERREIRA-LEITÃO V.; GOTTSCHALK L. M.F.; FERRARA M.A.; BON E. P.S.; de MORAES L. M.P.; ARAÚJO J.A.; TORRES F.A.G. Bioethanol from lignocelluloses: Status and perspectives in Brazil. Bioresour. Technol. v. 101, p. 4820–4825, 2010.
  • [15] SANTOS, J.R.A.; GOUVEIA, E.R. Produção de bioetanol de bagaço de cana-de-açúcar. Revista Brasileira de Produtos Agroindustriais, Campina Grande 11 (2009) 27-33.
  • [16] SUN, Y.; CHENG, J. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol. v. 83, p. 1-11, 2002.
  • [17] XAVIER, N.M; GRAJALES, L.M.; THOMÉO, J.C. (2009). “Características de movimentação e mistura de partículas de um biorreator rotativo para fermentação em estado sólido” (in Portuguese). VIII Congresso Brasileira de Engenharia Química em Iniciação Científica. (2009). Uberlândia, Brazil. WANG, E.; LI, S.; TAO, L. GENG, X. LI T. Modeling of rotating drum bioreactor for anaerobic solid-state fermentation. Appl. Energy, v. 87, p. 2839–2845, 2010.
  • [18] WANG et al. Study on the decreased sugar yield in enzymatic hydrolysis of cellulosic substrate at high solid loading. Appl. Biochem. Biotechnol., v. 164, p. 1139-1149, 2011.
Como citar:

MONTEIRO, P. A. S.; SELEGHIM JR, P..; "ENZYMATIC HYDROLYSIS OF SUGARCANE BAGASSE IN ROTATING DRUM REACTOR", p. 986-993 . In: Anais do XX Congresso Brasileiro de Engenharia Química - COBEQ 2014 [= Blucher Chemical Engineering Proceedings, v.1, n.2]. São Paulo: Blucher, 2015.
ISSN 2359-1757, DOI 10.5151/chemeng-cobeq2014-0666-24524-177587

últimos 30 dias | último ano | desde a publicação