Full Article - Open Access.

Idioma principal


Frontini, G. L.; Otero, F. A.; Eliçabe, G. E.;

Full Article:

In this work, Static Light Scattering (SLS) measurements are used to estimate the Particle Size Distribution (PSD) of a polymeric particle system incorporating prior information obtained from measurements of Scanning Electron Microscopy (SEM). The inverse problem is solved using a Bayesian approach following two different schemes for the representation of the PSD. In the first one, the PSD is represented by a parameterized family of distributions in a fixed-form scheme. In the second one, there is no assumption on the shape of the PSD, i.e. a free-form scheme is used. The Metropolis-Hastings algorithm is used to solve the inverse problem. The proposed objective is to obtain results from experimental data that are more consistent with respect to those obtained with SEM in a previous work, providing trust confidence intervals for the solution. The application of the Bayesian approach allows one to use, simultaneously, information provided by two different experimental techniques. The main conclusion of this work is that the usage of a Bayesian approach is recommended for cases where only an approximate model is available and use of reliable additional information can be made.

Full Article:

Palavras-chave: Inverse problem, Bayesian estimation, Particle Size Distribution, Light scattering.,


DOI: 10.5151/meceng-wccm2012-19517

Referências bibliográficas
  • [1] Glatter O., Sieberer J., Schnablegger H., “A Comparative Study on Different Scattering Techniques and data evaluation methods for sizing of colloidal systems using light scattering”, Part. Part. Syst. Charact. 8, 274–281, 199
  • [2] Pike E. R., Sabatier C., “Scattering and Inverse Scattering in Pure and Applied Science”, Academic Press, London, 200
  • [3] Glatter O., Hofer M., “Interpretation of Elastic Light Scattering Data. III. Determination of Size Distributions of Polydisperse Systems”, J. of Colloid and Interface Science 122, 496-506, 1988.
  • [4] Frontini, G. L., Fernández Berdaguer, E., “Inversion of Elastic Light Scattering measurements to determine Refractive Index and Particle Size Distribution of Polymeric Emulsions”, Inverse Problems in Eng.,11, 329, 2003
  • [5] Otero F. A., Frontini G., Eliçabe G., “Evaluation of Light Scattering Models to Characterize Concentrated Polymer Particles embedded in a solid polymer matrix”, J. of Polymer Science Part B: Polymer Physics 48 (9), 958-963, 2010.
  • [6] Vrij A., “Light Scattering of a Concentrated Multicomponent System of. Hard Spheres in the Percus-Yevick Approximation”, J. Chem. Phys. 69, 1742, 1978.
  • [7] Vrij, A., “Mixtures of hard spheres in the Percus-Yevick approximation. Light scattering at finite angles”, J. Chem. Phys. 71, 3267, 1979.
  • [8] Eliçabe G. E., Otero F., “Static Light Scattering of Concentrated Particle Systems in the Rayleigh-Debye-Gans Regime: Modelling and Data Analysis.”, Particulate Science and Technology 28 (5), 485-497, 2010.
  • [9] Pedersen, J. S., Small-angle scattering from precipitates: Analysis by use of a polydisperse hard-sphere model, Phys. Rev. B 47, 657-665, 1993.
  • [10] Robert C. P., Castella G., “Monte Carlo Statistical Methods”, Springer-Verlag, New York, 2004.
  • [11] Geman, S.; Geman, D., “Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images”, IEEE Transactions on Pattern Analysis and Machine Intelligence 6 (6), 721–741, 1984.
  • [12] Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M. N.; Teller, A. H.; Teller, E., “Equations of State Calculations by Fast Computing Machines”, Journal of Chemical Physics 21 (6), 1087–1092, 1953.
  • [13] Hastings, W. K., “Monte Carlo Sampling Methods Using Markov Chains and Their Applications”, Biometrika 57 (1), 97–109, 1970.
  • [14] Chib S., Greenberg E., “Understanding the Metropolis-Hastings Algorithm”, The American Statiscian 49, 327-335, 1995.
  • [15] Zanotto E.D., “Theoretical assessment of systematic errors in volume fraction determinations by microscopy methods”, J. Materials Research 13, 2045, 1998.
  • [16] Geyer, C. J., Thompson E.A., “Annealing Markov chain Monte Carlo with applications to ancestral inference”, J. Amer. Statist. Assoc. 90, 909–920, 1995.
  • [17] Gelman A., Gilks W. R., Roberts G. O., “Weak convergence and optimal scaling of random walk Metropolis algorithms”, Ann. Appl. Prob. 7, 110-120, 1997.
  • [18] Wang, H., Li R., Tsai C.-L., “Tuning Parameter Selectors for the Smoothly Clipped Absolute Deviation Method”, Biometrika 94, 553-568, 2007.
  • [19] Soulé, E. R., Elicabe G. E., Borrajo J., Williams R. J. J., “Analysis of the phase separation induced by a free-radical polymerization in solutions of polyisobutylene in isobornyl methacrylate”, Ind. Eng. Chem. Res. 46, 7535–7542, 2007.
  • [20] Soulé, E. R., Elicabe G. E., “Determination of size distributions of concentrated polymer particles embedded in a solid polymer matrix”, Part. Part. Syst. Charact. 25, 84–91, 2008.
  • [21] Currin, C., Mitchell, T., Morris, M., Ylvisaker, D., “Bayesian prediction of deterministic functions, with applications to the design and analysis of computer experiments”, J. Am. Statist. Ass. 86, 953–963, 1992.
  • [22] Oakley, J., O’Hagan A., “Bayesian inference for the uncertainty distribution of computer model outputs”, Biometrika 89, 769–784, 2002.
Como citar:

Frontini, G. L.; Otero, F. A.; Eliçabe, G. E.; "COMBINATION OF SEM AND LIGHT SCATTERING DATA FOR THE INVERSE ESTIMATION OF PARTICLE SIZE DISTRIBUTION USING A BAYESIAN APPROACH", p. 3677-3690 . In: In Proceedings of the 10th World Congress on Computational Mechanics [= Blucher Mechanical Engineering Proceedings, v. 1, n. 1]. São Paulo: Blucher, 2014.
ISSN 2358-0828, DOI 10.5151/meceng-wccm2012-19517

últimos 30 dias | último ano | desde a publicação