Full Article - Open Access.

Idioma principal

A VARIATIONAL MULTISCALE METHOD WITH MULTIFRACTAL SUBGRID-SCALE MODELING FOR LARGE-EDDY SIMULATION OF TURBULENT FLOW

Gravemeier, V.; Rasthofer, U.;

Full Article:

A variational multiscale method with multifractal subgrid-scale modeling is proposed for large-eddy simulation of turbulent flow. In the multifractal subgrid-scale modeling approach, the subgrid-scale velocity is evaluated from a multifractal description of the subgrid-scale vorticity, which is based on the multifractal scale similarity of gradient fields in turbulent flow. The multifractal subgrid-scale modeling approach is integrated into a variational multiscale formulation, demonstrating a new field of application of the variational multiscale concept. In addition, the application of the multifractal subgrid-scale modeling approach to wall-bounded turbulent flow is considered in this study. For this purpose, a nearwall limit of the multifractal subgrid-scale modeling approach is developed. The novel computational approach of multifractal subgrid-scale modeling within a variational multiscale formulation is then applied to turbulent flow over a backward-facing step. The results confirm a very good performance of the proposed method, and improved results are obtained compared to a dynamic Smagorinsky model and a residual-based variational multiscale method.

Full Article:

Palavras-chave: Large-eddy simulation, Multifractal subgrid-scale modeling, Variational multiscale method, Wall-bounded turbulent flow, Backward-facing step.,

Palavras-chave:

DOI: 10.5151/meceng-wccm2012-18747

Referências bibliográficas
  • [1] Bazilevs Y., Calo V. M., Cottrell J. A., Hughes T.J.R., Reali A., Scovazzi G., “Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows”. Comput. Meth. Appl. Mech. Engrg. 197, 173-201, 2007.
  • [2] Burton G. C., DahmW. J. A., “Multifractal subgrid-scale modeling for large-eddy simulation. I. Model development and a priori testing”. Phys. Fluids 17, 075111-1-075111- 16, 2005.
  • [3] Burton G. C., Dahm W. J. A., “Multifractal subgrid-scale modeling for large-eddy simulation. II. Backscatter limiting and a posteriori evaluation”. Phys. Fluids 17, 075112- 1-075112-19, 2005.
  • [4] Falconer K., “Fractal Geometry: Mathematical Foundations and Applications”. Wiley, New York, 1990.
  • [5] Gravemeier V., “The variational multiscale method for laminar and turbulent flow”. Arch. Comput. Meth. Engng. 13, 249-324, 2006.
  • [6] Gravemeier V., Gee M. W., Kronbichler M., Wall W. A., “An algebraic variational multiscale-multigrid method for large-eddy simulation of turbulent flow”. Comput. Meth. Appl. Mech. Engrg. 199, 853-864, 2010.
  • [7] Gravemeier V., Gee M. W., Wall W. A., “An algebraic variational multiscale-multigrid method based on plain aggregation for convection-diffusion problems”. Comput. Meth. Appl. Mech. Engrg. 198, 3821-3835, 2009.
  • [8] Gresho P. M., Sani R. L., “Incompressible Flow and the Finite Element Method”. Wiley Chichester, 199
  • [9] Hughes T. J. R., Mazzei L., Jansen K. E., “Large eddy simulation and the variational multiscale method”. Comput Visual Sci 3, 47-59, 2000.
  • [10] Hughes T. J. R., Scovazzi G., Franca L. P., “Multiscale and stabilized methods”. in: E. Stein, R. de Borst, T. J. R. Hughes (Eds.), Encyclopedia of Computational Mechanics, John Wiley Andamp; Sons, Chichester, 2004.
  • [11] Kasagi N., Matsunaga A., “Three-dimensional particle-tracking velocimetry measurement of turbulence statistics and energy budget in a backward-facing step flow”. Int. J. Heat Fluid Flow 16, 477-485, 1995.
  • [12] Le H., Moin P., Kim J., “Direct numerical simulation of turbulent flow over a backwardfacing step”. J. Fluid Mech. 330, 349-374, 1997.
  • [13] Mullin J. A., Dahm W. J. A., “Dual-plane stereo particle image velocimetry measurements of velocity gradient tensor fields in turbulent shear flow. II. Experimental results”. Phys. Fluids 18, 035102-1-035102-28, 2006.
  • [14] Rasthofer U., Gravemeier V., “Multifractal subgrid-scale modeling within a variational multiscale method for large-eddy simulation of turbulent flow”. Preprint, submitted for publication in Journal of Computational Physics, (2012).
  • [15] Sagaut P., “Large Eddy Simulation for Incompressible Flows”. 3rd ed., Springer- Verlag, Berlin, 2006.
  • [16] Sreenivasan K. R., “Fractals and multifractals in fluid turbulence”. Annu. Rev. Fluid Mech. 23, 539-600, 1991.
  • [17] Taylor C. A., Hughes T. J. R., Zarins C. K., “Finite element modeling of blood flow in arteries”. Comput. Meth. Appl. Mech. Engrg. 158, 155-196, 1998.
  • [18] Whiting C. H., Jansen K. E., “A stabilized finite element method for the incompressible Navier-Stokes equations using a hierarchical basis”. Int. J. Numer. Meth. Fluids 35, 93-116, 2001.
Como citar:

Gravemeier, V.; Rasthofer, U.; "A VARIATIONAL MULTISCALE METHOD WITH MULTIFRACTAL SUBGRID-SCALE MODELING FOR LARGE-EDDY SIMULATION OF TURBULENT FLOW", p. 2209-2219 . In: In Proceedings of the 10th World Congress on Computational Mechanics [= Blucher Mechanical Engineering Proceedings, v. 1, n. 1]. São Paulo: Blucher, 2014.
ISSN 2358-0828, DOI 10.5151/meceng-wccm2012-18747

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações