Full Article - Open Access.

Idioma principal


Ahmed, A.; Sluys, L. J.;

Full Article:

A mesoscopic, geometrically and physically nonlinear finite element model based on solid-like shell elements is presented for the simulation of impact damage in laminated composite structures. To model matrix cracking, a discontinuous solid-like shell element (DSLS) is utilized. A partition of unity approach is exploited to incorporate the discontinuity in the shell mid-surface, shell director and internal stretching field. This enables the element to model arbitrary propagating cracks through a finite element mesh. The element has only displacement degrees of freedom, thus avoid the need for a complicated update of rotation degrees of freedom in nonlinear applications. The model is also able to predict the buck- ling response of laminated composites. To model delamination phenomena, a shell interface model is developed. The model allows computationally efficient simulation of delamination and evaluation of the consistently linearized tangent stiffness matrix for large deformation problems, which is essential for convergence. To model the coupled response of matrix crack- ing and delamination under large deformations, a computational framework is developed. The combined modeling of matrix cracking and delamination is achieved without incorporat- ing of additional degrees of freedom. A numerical example is presented to simulate failure resulting in matrix cracking and delamination in laminated composite shell structures.

Full Article:

Palavras-chave: Solid-like shell, Laminated composites, Impact damage, Mesh independent cohe- sive cracking, Delamination cracking,


DOI: 10.5151/meceng-wccm2012-16721

Referências bibliográficas
  • [1] Joshi S. P., Sun C. T., “Impact induced fracture in a laminated composite”. J. Compos. Mater. 19, p 51-66, 1985.
  • [2] Choi H. Y., Chang FK., “A model for predicting damage in a graphite/epoxy laminated composites resulting from low-velocity point impact”. J. Compos. Mater. 26, p 2134- 2169, 199
  • [3] Lammerant L., Verpoest I.,“The interaction between matrix cracks and delaminations dur- ing quasi static impact of composites”. Compos. Sci. Technol. 51, p 505-516, 1994.
  • [4] Hou J.P., petrinic N.,Ruiz C., Hallet S.R., “Prediction of impact damage in composite plates”. Compos. Sci. Technol. 60, p 273-281, 2000.
  • [5] Zhao G., Cho C.,“On impact damage of composite shells by a low velocity projectile”. J. Compos. Mater. 38, p 1231-1254, 2004.
  • [6] Iannucci L., Ankersen J.,“An energy based damage model for thin laminated composites”. J. Compos. Mater. 66, p 934–951, 200
  • [7] Donadon M.V., Iannucci L., Falzon B.G., Hodgkinson J.M., de Almeida S.F.M.,“A pro- gressive failure model for composite laminates subjected to low velocity impact damage”. Compos. Struct. 86, p 1232–1252, 2008.
  • [8] Yang Q., Cox B.,“Cohesive models for damage evolution in laminated composites”. Int. J. Fact. 133, p 107-137, 2005.
  • [9] Collombet F., Bonni J., Lataillade J.L.,“A three dimensional modelling of low velocity impact damage in composite laminates”. Int. J. Numer. Methods Engng. 39, p 1491- 1516, 1996.
  • [10] Hashagen F., Schellekens J.C.J, de Borst R., Parisch H.,“Finite element procedure for modelling fibre metal laminates”. Compos. Struct. 32, p 255-264, 1995.
  • [11] Hashagen F., de Borst R., de Vries T.,“Delamination behavior of spliced fiber metal lam- inates. Part 2. Numerical investigation”. Compos. Struct. 46, p 141–162, 1999.
  • [12] Wisnom M.R., Chang F.,“Modelling of splitting and delamination in notched cross-ply laminates”. Compos. Sci. Technol. 60, p 2849-2856, 2000.
  • [13] Bouvet C., Castanie B., Bizeul M., Barrau J.J,“Low velocity impact modelling in laminate composite panels with discrete interface elements”. Int. J. Solids Struct. 46, p 2809–2821, 2009.
  • [14] Melenk J.M., Babuska I.,“The partition of unity finite element method: Basic theory and application”. Comput. Methods Appl. Mech. Engrg. 139, p 289–314, 1996.
  • [15] Iarve E.V.,“Mesh independent modelling of cracks by using higher order shape func- tions”. Int. J. Numer. Methods. Engrg. 56, p 869-882, 2003.
  • [16] van der Meer F.P., Sluys L.J.,“A phantom node formulation with mixed mode cohesive law for splitting in laminates”. Int. J. Fract. 158, p 107-124, 2009.
  • [17] Ahmed A., van der Meer F. P., Sluys L. J., “A geometrically exact, discontinuous shell model for transverse matrix cracking in composite laminates”. In: ECCOMAS thematic conference on the mechanical response of composites, Hannover, Germany, p 371-378, September 2011.
  • [18] Hansbo A., Hansbo P., “A finite element method for the simulation of strong and weak discontinuities in solid mechanics”. Comput. Methods Appl. Mech. Engrg. 195, p 3523- 3540, 2004.
  • [19] Parisch H., “A continuum based shell theory for nonlinear applications”. Int. J. Numer. Methods Engng. 38, p 1855-1883, 1995.
  • [20] Ahmed A., van der Meer F. P., Sluys L. J., “A geometrically nonlinear discontinuous solid-like shell element (DSLS) for thin shell structures”. Comput. Methods Appl. Mech. Engrg. 201-204, p 191-207, 2012.
  • [21] B utcher N., Ramm E., Roehl D., “Three-dimensional extension of non-linear shell for- mulation based on the enhanced assumed strain concept”. Int. J. Numer. Methods Engng. 37, p 2551-2568, 1994.
  • [22] Larsson R., “A discontinuous shell-interface element for delamination analysis of lami- nated composite structures”. Comput. Methods Appl. mech. Engrg. 193, p 3173-3194, 2004.
  • [23] Xu X.P., Needleman A., “Numerical simulations of fast crack growth in brittle solids”. J. Mech. Phys. Solids 42, p 1397-1434, 1994.
  • [24] Ahmed A., Sluys L.J., “A three dimensional progressive failure model for impact damage in laminated composites”. In preparation
  • [25] Benzeggah M.L., Kenane M., “Measurement of mixed-mode delamination fracture tough- ness of unidirection glass/epoxy composites with mixed mode bending apparatus”. J. Compos. Sci. Technol. 56, p 439-449, 1996.
Como citar:

Ahmed, A.; Sluys, L. J.; "A FINITE ELEMENT PROCEDURE FOR MODELING PROGRESSIVE DAMAGE IN LAMINATED COMPOSITE SHELL STRUCTURES", p. 281-289 . In: In Proceedings of the 10th World Congress on Computational Mechanics [= Blucher Mechanical Engineering Proceedings, v. 1, n. 1]. São Paulo: Blucher, 2014.
ISSN 2358-0828, DOI 10.5151/meceng-wccm2012-16721

últimos 30 dias | último ano | desde a publicação